
REPORT

.

. . . .
. .

NO. GDC-DDF67-004

Applications of

ORK SIMULATION

SPACE VEHICLE CHECKOUT

YNAMICS
Convair Division

* .

. .

. .

. _ F - REPORT NO. GDC-DDF67-004

3

. .
. .

Applications of

VOLUME II

DECEMBER 1967

/

Submitted to
NATIONAL AERONAUTICS AND SPACE ADMlNlSTRATlON

GEORGE C. MARSHALL SPACE FLIGHT CENTER
. HUNTSVILLE, ALABAMA

undmr
CONTRACT NAS8-21102

Propored by
CONVAIR DIVISION OF GENERAL DYNAMICS

HUNTSVILLE, ALABAMA

.
.

. . .

. .

TABLE OF CONTENTS

List of Illustrations iii

SuIllmary ' V

Introduction . 1

1. DNS UPRATE PRC)GRAM .
Purpose

Storage
Timing
Use
Method
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

. ' Restrictions .

1 -1
1-1
1-2
1 -2
1-2
1-2
1-6 '

1-8
1-13
1-39

2. NAME/TIME CARD GENERATOR PR~GRAM
Purpose
Storage
Timing

. Use
Method
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

3. DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM
Purpose
Restrictions
Storage

Use
Method
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

Timing ..

I.

i

2 -1
2-1
2 -1
2-2
2 -2

2 -5
2-11
2-33

2-3

3 -1
3 -1
3 -1
3 -2
3-2
3-2
3-3
3-7
3 -11
3-47

L

4. DNS COMPARATOR P R O ~ R b I
Purpose
Restrictions .

Storage
Timing
Use

’ Method
Input Format
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

5. ,DNS TFUWSLATOR PROGRAM

6.

7.

Purpose
Restrictions .
Storage
Timing
Use
Method
Input Format
Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

*

DTC/REFTAB PROGRAM
Purpose
Restrictions
Storage ’
Use

Output Format
Appendix A. Program Flow Charts
Appendix B. Glossary of Terms

. Method

References

. .

471
4-1
4-1
4-1
4-2
4-2
4-4
4-8
4-11
4-17
4-51

5-1
5-1
5-1
5-1
5-1
5-2
5-4
5-6
5-6
5-11
5-21 .

6-1
6-1
6-1
6-1
6-2
6-2
6-5
6-9
6-21

7-1

ii

1.
2.

1-1
1-2
1-3

2-1
2-2
2-3
2-4

I 3-1
3 -2

4-1
4-2
4-3
4-4
4-5

5- 1
5-2
5-3
5-4

. . ULLUSTR ATIONS

Test procedure -validation technique.
Printout of revised M'C program (1 of 2).
Printout of revised DTC program (2 of 2).

New card listing from update program.
Out of sequence listing from update program.
Composite master file tape listing of update program.

.

Equation listing name and time card generator program.
Terminal listing name and time card generator program.
Transactor listing name and time card generator program.
Initiator listing name and time card generator program.

Punch card and man&l input listing, input conversion program.
Punch card and data total, input conversion program.

Representative parts of test procedure simulation.
Representative parts of ATOLL card image tape.
Prologue printout for comparator program.
Discrepancy listing for comparator program.
Unused component list from comparator program.

Simulation history printout.
Dictionary card deck (typical).
Translated simulation history printout.
Translated simulation state list printout.

viii
xi

xii

1-9
1-11
1-12

2-0
2-7
2-9
2-10

3-8
3-10

4-9
4-10
4-12
4-13
4-15

5-7
5-8
5-9
5-10

6- 1 Time card listing, MTC program. 6-6
6-2 Reference table printout. 6-7

iii

SUMMARY

The family of Discrete Network Simulation Programs developed by the Convair division
of General Dynamics were initially developed as a tool for time oriented simulation
and analysis of man machine systems. With this technique the operation of complex
systems can be accurately simulated. During the development of DNS, repeated test-
ing has proven its value as an aid to technical data generation, projected failure
analysis, and automatic malfunction analysis. It has been shown to be a versatile
tool thats application is limited only by the imagination of the user. Under the present
contract the application of DNS as an instrtiment to aid in the validation of Saturn V
system test procedures was initiated.

.

In order to optimize the technique of that procedure validation, and effect on overall
improvement in the versatility of DNS, certain programming tasks were undertaken
during this contract period. Changes were incorporated to existing DNS programs
and several new programs were written to accomplish the task of test procedure
validation. The new programs are covered in detail in this.volume.

i

. .
. .

. .

. .

. . .

V

.

INTRODUCTION

A test procedure may be simulated and validated by stimulating a model of the system
in accordance with the test procedure, and comparing the results of the simulation
with the predicted test results step by step. Figure 1 illustrates the relationships
between the DNS/Test Procedure Validation programs. The following techniques and
programs are employed in the validation process: .

SYSTEM DESCRIPTION

Boolean equations describing the system to'be modeled are punched on cards and
assembled into an Equation Card Deck.

TIME CARD GENERATOR PROGRAM
. .

The Equation Card Deck is then processed by the NAME/TIME Card Generator
Program which compiles a list of variables from the equations, determines the re-
quired timing data for each variable in the list, and punches this information on cards
to create the Time Card Section for the model.

UPDATE PROGRAM

The Time Card Deck and Equation Card Deck are formed into a Master Data File,
and stored on tape using the Update Program. The printout is thoroughly analyzed
and changes or corrections are inserted into the Mas te r Data File again using the
Update Program.

PREPROCESSOR-EDITOR PMGRAM

1
The Preprocessor-Editor Program converts and cross references the system
description from the Master Data File, and stores this information on the model
tape formatted for use by the Simulation Program.

INPUT CONVERSION PROGRAM

.

The Input Conversion and Punch Program generates the driving functions required by
the Simulation Program directly from the ATOLL card image tape for the test
procedure. The program may be used with either Boeing o r IBM ATOLL formats.

1

.

5;r w
t.l

I

I

2 ”
I

These driving functions consist of punched and sequenced input commands and
control cards.

SIMULATION PROGRAM

1 The Simulation Program uses the driving functions to stimulate the model and control
the' simulation in accordance with the test procedure. The results of the simulation
are stored on a simulation output tape. As each variable changes state, a cycle
counter is incremented by one, providing a record of the number of changes of state
of each variable for a given test. Each input is analyzed for its effect on the system,
and the resulting history of inputs and reactions are created for all the variables.
Printout of this 'event trail' is optional to the extent that all, none, or only selected
portions may be printed.

TRANSLATOR PROGRAM -
The Translator Program substitutes descriptions obtained from an input dictionary for
the coded names in the output from a test procedure simulation. The program allows the
simulation h is toqand the comparator listifigs to be printed with the variables identified
by hardware nomenclature. The nomenclature can be referrable directly to system
schematics if desired.

. '

COMPARATOR PROGRAM

The Comparator Program validates the test procedure by comparing the results of the
test procedure simulation with the ATOLL predictions for the test procedure, and
lists any differences encountered. Areas of differences are manually examined to
determine the reason for the difference and will fall into one of these three categories.

1

1. Error in ATOLL tape.

2. Error in schematics. .

3. Error in DNS model.

AUTOMATIC MALFUNCTION ANALYSIS PROGRA.MS1

The Input Conversion and Punch Program, and the Comparator Program were written
for test procedure validation exclusively during the period of this contract. The Time
Card Generator, Translator Program, and the Update Program, were written as DNS
model building improvements during the period of this contract, and may be used
for AMA application as well. The following modifications were made to the Simulation
Program to improve the test procedure validation technique.

1. Provide increased data handling capability. This was required to permit
the complete test procedure model to be simulated normally without

, 2.

exceeding the program &ta storage limits available during the runs. ,

The additional data storage area was obtained by removing all
references and routines pertaining to the conversion and processing of
the Binary Simulation Output Tape, and substituting a printed output
save tape for subsequent use with the Comparator Program. This
modification permitted increasing the data limits by two thousand IBM
words.

Provide for labeling in the simulation history any input variable whose
state in the value table is already at the value requested. This permits
identification of any test procedure commands which may be redundant.

3. Provide routines to count and store the number of times a variable
undergoes a change of state (cycles) during the course of a test procedure
simulation. The cycle counting is activated when a *HEAD LIST control
card is encountered, and the current cycle count for each variable is
then printed whenever a state list is requested. This permits identwing
variables which may be being overworked, and in conjunction with the '

Comparator Program, permits listing all variables which were not used
at all during a test procedure.'

The Down Translation and Culling Program (DTC) is not required for test procedure
validation if the variable name length is held to a maximum of six characters. If
expanded names are desired for test procedure validation, the Translation Program
will provide the uptranslated name when used in the process depicted by Figure 1:
Modifications to the DTC Program were incorporated to expand its overall efficiency
for automatic malfunction analysis technique usage. Modifications were as follows:

1.

2.

3.

4.

Provide the capability to accept input data from either the time and
equation card deck o r the basic data. tape from the Update Program.

Assign the three character code names to inactive variables for
inclusion in the printed output.

Provide segregation of processed equation data printouts by equation
numbers.

Provide the capability to read formatted time card names.

A representative printout from the modified program is shown in Figure 2.

As with the DTC Program the REFTAB (Variable Reference Table) step is not utilized
during test procedure validation but was designed specifically to assist in verifying
the accuracy and completeness of a modelled system intended for use with AMCA.
This program reads the AMA model tape previously created by the DT&C Program,
converts the binary coded data describing each variable, and prints out a reference
data list which summarizes the identifications, classification, type, and use of each
variable in the AMA model.

b

4

. .

. t I

!
I

*.

i
' I
i

-- -I--: 1

.
6?
W

P I
0

U

El
b
0
k a

43-4

k z:

A d d I4 4.d 1
I
i
t
i
3

I

?
I

6

I

I

- :

6-
w
0

In j I1

2 1 .;t

Y

cu

k z:
U c
U
0
c

I V

C
c

i d ,

i" I
! I I

8

. .

. I

SECTION

DNS UPMTE PROGRAM

. I

1

CONVALR DIVISION OF GENEFUL DYNAMICS CORPORATXON

DNS UPDATE PROGRAM

AUTHOR: T. C . Larson
Convair division of General Dynamics

PURPOSE: The Discrete Network Simulation (DNS) Program requires the
use of large quantities of IBM cards to describe a large network
o r system. During the "model building" phase it is necessary
to load these cardiinto the computer each time a change (cor-
rection or system configuration alteration) is incorporated into
the model.

The Update Program provides DNS programs with a model
on tape that may be readily changed with a minimum of card
handling.

The function of the Update Program is to:

1. Generate an initial model tape with each card image assigned
an ascending sequence number, in a format compatible with

I subsequent DNS programs.

2.

3.

Insert new (additional) card images into model where directed.

Delete cards from model as directed.

4.

5.

This program was developed originally for IBM 7090/94 use but
is written entirely in Fortran N for compatibility with other data
processing systems.

Correct individual cards as directed.

Generate a model tape with new sequence numbers.

- .

I

RESTRICTIONS:

STORAGE :

. .

.. 1

TIMING

USE:

If program sorting of the input data is requested, total data
deck input is limited to 702 cards (including control cards).

This program, including files, occupies 31,327)8 consecutive
locations in 7090/94 memory. The first subroutine in the
object program 'ASETUP' starts at location 03047 and the
final subroutine 'ENDEM' fills memory through location 20670 -
a total of 15,621)a consecutive locations.

Subroutine Function

1. ASETUP Driver
2. CD2BIN BCD to binary conversion
3. CUPDAT Read and write tapes and generate

4. CONCRX Identification and interpretation of

5. GALOAD Initial tape and sequence -number . generation
6. HERROR Printing of error messages
7. RDTCD Card reading and end of data sensing
8. TITLEX Paging and title printout
9. UPSRX Stores data and generates sorted

10. ENDEM

sequence numbers

control cards

control words for sequential card use
Wri te tape EOF, rewind tapes, and
prints new tapes

Output of the program is approximately 1100 lines per minute.
Thus, a tape containing 4500 records could have approximathy
200 records updated in 4 minutes, including complete listings.

This time could be reduced slightly by writing the print tape as
the model is updated, but for this particular DNS application it
was ascertained that it would be of more value to the user if the
'save' tape is rewound and printed, providing the user with an .

actual printout of the DNS model input tape.

The program operates in three modes. Tape requirements are
listed for each mode. The first data card contains all necessary
control words for program mode selection.

Mode 1
- 2.

Col. 1-12 must have *LOADbCARDSb
Col. 13-66 blank
C O ~ . .67-80 any information pertinent to tape ID, (may be

left blank)

.l-2 .

- *

' .

. .

. .

* .

I

This mode reads the model
image, generates sequence

€rom cards, stores the card
numbers, and writes the card

.

images and sequence numbers on a tape. At completion of
program, it rewinds the tape and provides a printout for
reference.

Tape Requirement8 -
Fortran Logicdl System Function

8 A5

Mode 2

COI. 1-7 must contain *UPDATE
Col. 8-66 blank
Col. 67-80 (optional) same as Mode

DNS Model

1

This mode assumes that new cards are pre-sorted in ascending
sequence numbers. Out of sequence cards are ignored and
will not be included in the new tape. They will be printed with
notation to this effect.

Tape Requirements -
Fortran Logical System Function 22E

8
12

A5 Existing DNS Model
A7 Updated DNS Model

Mode 3

C O ~ . 1-7 must contain *UPDATE
Col. 8-24 blank
Col. 25-30 *SORTb
C O ~ . 31-66 , blank
C O ~ . 67-80 (optional) same as Mode 1

This mode assumes that update cards are not pre-sorted in
ascending sequence numbers and processes all cards accordingly,
It should always be used when numerous corrections are made
to the model.

Tape Requirements -
For Modes 2 and 3 the
or more of the three $

1-3

Same as Mode 2

next sequential data card must be one
control cards listed. -

. .

. .

. .

$ADD

Col. 1-6 $ADDbb
Col. 7-24 blank
Col. 25-30 The sequence number on existing tape where

new cards are to be added. Right adjusted
to Col. 30.

Col. 31-62 blank

This card causes all cards immediately following up to next
($ 1 control card to be inserted into the model at the point
designated in Col. 25-30. Card columns between Col. 25-30
that do not contain numbers must contain blanks.

$DELETE '

CO~. 1-7 $DELETE
Col. 8-24 blank
Col. 25-30 The sequence number of the first card in

existing model to be deleted. Right adjusted
to Col. 30.
blank o r word thru
The sequence number of the last card in
exidting model to be deleted. Right adjusted
to Cql. 42.

C O ~ . 31-36
Col. 37-42

Col. 43-80 blank

If only one card is being deleted, Col. 37-42 may be left blank
or the number of the deleted card may be repeated. Card
columns between 25-30 and 37-42 not containing numbers must
be left blank.

$CORRECT

Col. 1-8 $CORRECT
Col. 9-24 blank
Col,. 25-30 The sequence number of the card in existing

model to be changed. Right adjusted to CoL 30.

Card columns between 25-30 not containing numbers must be
blank. Card immediately following is card that will replace the
existing card indicated in card Cols. 25-30.

The following card is required in all modes and is always the
last data card in the data deck.

1 - 4 ,
I

. .

. .

\ *END DATA
i

Col. 1-12 must have *ENDbDATAbbb
CO~. 13-80 blank

. DECK SET UP:

A typical deck set up applicable to Mode 1 is a;9 follows:

1. Binary program deck.
$DATA,

. . 2. *LOAD CARDS (optional tape ID) - -
3. (Data to be loaded) - -
4. *ENDDATA

5. End of File (EOF) (7-8 punch)

A typical deck set up for Modes 2 and 3 is as outlined below:

1. Binary program deck.
$DATA

2. *UPDATE *SORT (or blank) (optional tape ID)

3. $ADD 5266 (old tape sequence number)

. .

4. -
(Cards to be loaded) -

5.. $DELETE 350 through 520

6. $CORRECT 1501

7.
.

(Card to be inserted in place of one listed)

8. *ENDDATA

9. EOF

. . 1-5

. ,
. .

METHOD: The course followed throughout the program is:

1. Set up counters, flags, and control parameters
and ready tapes.

2. ' Read first control card.

3.

4.

Determine mode of operation and set flags.

If 'load cards' mode is selected, program fo~~owa
steps A through H.

A.

B. Assigns sequence number.

C . Writes on save tape.

D.

1

Reads data cards one at a time.

When end of data is sensed, writes *END
DATA and EOF on save tape.

E. Rewinds save tape.

F. Reads save tape and writes on print tape.
I

G. Rewinds save tape.

H. Endrun. .

5. If UPDATE mode is selected, program follows steps
I through Q.

I. Reads data card and determines classification
i. e. , control card or input card.

J. If control card directs processing to appropriate
portion of program, add, delete, or correct.
Obtains point in existing tape where UPDATE is
to be inserted.

K. If input card processes card through portion of
program as directed in step J. Process includes
reading existing tape up to point directed. As the
old tape is read, card images are rewritten with
new sequence numbers on new save tape.

1-6

6.

L.

M.

N.

0.

P.

Q.

When addition or correction point is reached,
new card/cards are then added to new tape with
continuing sequence numbers.

Cards added or deleted are printed out for reference.
In the case of corrections, both old card and new
card is printed.

When end of data deck is sensed, remainder of old
tape is read and rewritten on new tape with new
sequencing until tape end of data is encountered.

If during processing an out of sequence insertion
number is encountered, the control card and its
associated cards are not processed but flagged
and printed for reference,

Program transfers to processing as previously
stated in steps D through 0.

End run.

If update sort option is selected, a l l data cards are read
into memory and processed as in steps R through 2.

R.

S.

Word 1

Word 2

Word 3

T.

As each card is read, it is classified as a
control o r input card.

As each control card is encountered, a 3 word
record is generated.

Contains the sequence number listed on the control
card.

Contains the number of the core storage cell
where the first word of the control card is stored.

Contains the number of words stored pertaining
to this control card. This includes the number
of words in the control card, plus the number of
words in all associated cards that follow.

When the end of data is sensed, it is assigned a
number large enough to ensure that it will be the
largest sequence number.

..
. .

1 -7

- U. The three word records are then sorted by the
first word (sequence insertion numbers) in
ascending order,

A flag is set that will direct other portions
of the program to obtain data from core instead
of input tape.

V.

W. Program then transfers the card images into
' the update portion of the program as outlined .

in steps X through Y.

X.

' I

?

Y.

OUTPUT FORMAT:
. .

The location of the card in memory is obtained
from the second word of the sorted three word
record. The number in word three is noted and
as the card image is transferred to the main
program for processing, it is reduced by the
number of words transferred.

After processing each card image, the previous
number noted frorn,word three is checked for a
zero value. If it is not zero, the next card image
is obtained from the sequence core location of the
previous card processed. If it is zero, the next
three word record is obtained and a new core
location and word count is noted for the next card.

.

2. Processing of cards and program termination
is identical as explained in steps J through Q.

A sample of the DNS Update Program is illustrated in Figures
1-1 thru 1-3. The corrections that were ma& to the model tape
will be listed starting on Page 1 of the printout. Figure 1-1 is a
composite sample taken from an actual update test run. The
information (SORT TEST) printed on the title line after "Tape
ID1 is an optional input for identifying the model tape. As the
update of the tape processes, the changes are listed as they
occur. The sequence number appearing at the right of the
cards that were added is the new sequence number and will not
necessarily agree with the number on the update $ADD card.

The cards k le ted in the example have the old tape sequence
number printed on the right. Correction cards will have both
the old card and new card listed in that order, including old
and new sequence numbers. The e r ro r in the example shown
is underlined and the correct card has the relay number
changed to 28K60.

1-8

t

I
t
$

i

f

1

!
i
I

!

!
i

I

.. 1
1 ;

i
I

* : *

n
UJ
I-
u
UI
d
OL
m u
v)
U
3

n

a
cr
u
(3
I
3
a
A
.J
a
u.
LLI
I
I-

U

/

I

I
I
I
!

P)

3
la
E3
0
k w

B
i!

L U
I

* I -

C
m
11 f
I - .

I- tx m
v)

d A
00
99 .

m o m a a

1-9

If the *SORT mode was not used and a control card was
entered out of sequence, the corrections will not be incorp-
orated in the new tape, and the cards will be printed flagged
by asterisks as shown in the example on Figure 1-2.

After all corrections have been incorporated, the SAVE tape
is rewound and a print of the new tape made. This consists
of the time cards and equations as shown in Figure 1-3.

. :..

I

. .

1-10

. .

b

t

I
f '

i 1 .
I
i
i
i
i
i
i
i
i

1

i
i

I
I
I

1
f
1

I I
!
I . i

I
I

i

!

I

I
i
:
I

I

I

I

i

c

c

.

3

n
3

n
3

n

0

v)
0

m
0

r/)

m
3
I

a'
k
0
k , a

a
0
k
W

1

i
:

i

i
$

i
I

, !

I
I

t

!
!

i

!

u u , 4
A rl N N'ln n UI
n rn m m urn m,m

6
k 0

k a

u)
C
Q
3 '
a .
3

61
P
I-
w
2 .

i t w .
I-
W
CL

I

b

I-
Y,
UJ
I-

C
aL
a
v) .
0
U

w
a

e .
a

1-12

APPENDIX A

PROGRAM FIX)W CHARTS .

1-13

\

. .
.

. .

ST ART

CALL CONCRD
6ET RUN TYPE

DATA FROH
CONTROL

I

f

ARDS ONTO TAP

. .

i
I

I

Figure A-1. SUBROUTINE ASETUP (1 of 1)

1-15

t

I HULT IPLY
ORIG. ARG. Br

4 + PREV.
VALUE

KUR = (KUM+4+KUn)

-t

D I V I D E ARG.
BY D I V
HQ = M$!>

Figure A-2. SUBROUTINE CD2BIN (1 of 1)

1-16

Figure A-3. SUBFIOUTINE CONCRD (1 of 5)

1-17

. .

CALL CD2B
CONVERT NO,

TO BINARY

f
SAVE 1ST

WORD ($ADD)
ON CONT. CARD

FOR REFITO
NEXT CARD

Figure A-3. SUBROUTINE CONCRD (2 Of 5)

1-18

i

. . . .
. ..

. . . .
. .

SAVE NO.
FOR UPDATE

DELETE L I M I T I
RECORD FST

HORD ON CARD
$DELETE FOR

NEXT CONT. CARD 1 REF; I

Eigure A-3. SUBROUTINE CONCRD (3 of 5)

1-19

Figure A-3.

ZERO SEQ.
ERR. FLAG

d, PREY. CARD
INDEX FLAG

SAVE 5TH
WORD ON.

c

I

SUBROUTINE CONCRD (4 of 5)

1-20

SAVE. CONTROL C

DJ RECTOR FLAG

SET ERROR
MESS FLAG

= 3 9

0 RETURN

Figure A-3. SUBROUTINE CONCRD (5 of 5)

. 1-21

. .

CALL T iTLE
WRiTE T I T L E

PAGE 1

CALL T iTLE
WRiTE T I T L E

PAGE 1

SET CARD
READ FLAG

i

_ .
. .

. .

I NCREHENT
L INE COUNT I +3 I . .

Figure A-4. SUBROUTINE CUPDAT (1 of 9)

1-22
I

. . . .

8 P

!

Figure A-4. SUBROUTINE CUPDAT (3 Of 9)

1-24

\

I 1 . . .
, .

. .
, . ..

. . .

I

Figure A-4. SUBROUTINE CUPDAT (4 of 9)

1-25 -

. .
. .

. .

. .

I NCREHENT
L INE COUNT

Figure A-4. SUBROUTINE CUPDAT (5 of 9)

1-26

. . . .
. " . .

Figure A-4. SUBROUTINE CUPDAT (6 of 9)

1-27 .

. .

. .

' . . .

. .

Figure A-4. SUBROUTINE C U P M T (7 of 9)

1-28 .

Figure A-4. SUBFUNTINE CUPDAT (8 of 9)

1-29

r

ILLEGAL
CONT. CARD

Figure A-4. SUBROUTINE CUPDAT (9 of 9)

1-30 .

I

’ . .

.

. .

CALL RDTCRO
GET A CARD

IMAGE

I

e:

. . . .

’ Figure A-5. SUBROUTINE GAzLlAD (1 of 1)

1-31 * _

r

,

Figure A-6. SUBROUTINE HERROR (l of 1)

' 1-32 ,

t

a ENTRY

. . :

L I N E COUNTER

1 Figure A-8. SUBROUTINE TITLEX (1 of 1)

1-34

. .

I STORE WORD -
I N LOCATOR

RECORD &
I NCREMENT

LOCATOR COUNT

CALL CD28
CONVERT NO.

TO BINARY

J

.l’
STORE STORAGE
CELL COUNT I N
LOCATOR RECORD
& INCREMENT

LOCATOR COUNT

Figure A-9. SUBROUTING UPSORT (1 of 2)

1-35

. .

8
I STORE CARD

FOLLOHiNG
PREVIOUS

CARD
RECORD

P
OBTAIN

ADDRESS OF
STORAGE
OF CARD

I

SET RETRIEVAL

23 RETURN

Figure A-9. SUBROUTINE UPSORT (2 of 2)

1-36

g
P . .

. . . .
. .

J a ,ENTRY

\

,

a RETURN
. .

I Figure A-10. SUBROUTINE ENDEM (2 of 2)

1-38
I

*

APPENDIX B . .

GIOSSARY OF TERMS
I

1.0 INDEX OF VAR&LES

The following is an alphabetical listing of the terms used in the Update Program.

NAME DE SCRIPTIQN

CARDS Tape 1/0 buffer.
CDCNT Sequence number.
IADD Word/Record count,
ICARD Sequencing recount.
ICONT SORT words/record count.
IFLG End card enountered flag.
IKNTR SORT storage cell counter. 1

ILOC

INUM
IPCD Temporary storage of UPDATE

ISEQ

ISNO Update correction factor.
ISQRT SORT option selected flag.
ISTOR SORT card internal storage.
ITEM

. I w D SORT retrieval word storage.
KARD Tape 1/0 buffer storage.
LAM

LARD Card I/Q buffer storage.
LCRD
LNCNT Printout line count.
LSKIP

0

SORT retrieval word storage cell
count.
Same as LAM/LSKIP after conversion,

control card.
Out of sequence control card encoun-
tered flag.

Temporary storage of retrieval word.

Sequence number from UPDATE
control card.

Sequence number on tape record.

Delete end sequence number from
UPDATE control card.

LTAP/MTAP Title words from initial control card. ' 5,

1-39

I

2 . 0 DEFINITIONS

NAlME DE SCRIPTION

CARDS During reading and writing of new tape complete 15
word record on tape is transferred into CARDS and
onto printout.

CDCNT As each card is read, CDCNT is increased by one
and is stored as 15th word on tape being created.

Record count of words during SORT card image
retrieval. Value is found in word 3 of each set of
retrieval records and is reduced by 14 as a 14 word
card record is transferred into location LARD. A
zero value in IADD signals that a new retrieval yecord
must be obtained to find location of next card image.

Each time a tape record or card is read, ICARD is
incremented by one. Stored as 15th word on newly .

IADD

. .
ICARD

. . generated tape,

~ ICONT The count of the number of words stored in ISTORE
that apply to a specific control card. .

In read card routine, if a card containing *END DATA IFLG

. .

IKNTR

ILOC

is encountered flag is set to 1 to signal no more cards
to be input. Flag is tested during update routine and
when sensed to be on, program bypasses further read
calls. .

As cards are read into memory during a SORT run,
IKNTR is incremented by one for each word entered.
When a control card is being read the value or IKNTR
for the first word of the control card is stored in the
retrieval table NVD.

Retrieval table word counter. SORT option. .

INUM Buffer cell for input of sequence number read from
control card. Value in INUM is input to CD2B con-
version routine and then transferred into LAM or
LSKIP as applicable.

NAME

IPCD

. .-

ISNO

ISORT

ISTOR

ITEM

I W D '

JSARD

LAM

LARD

LCRD

\

DESCRIPTION

As each control card is located, the first word is
saved in location IPCD. As the next control card
is encountered, the first word is compared with
IPCD to see if this newly encountered update instruc-
tion followed an ADD update instruction.

During control card interpretation if an out of sequence
update number is encountered, ISEQ is set to one so
that if data cards are related to the out of sequence
control card they will be printed. Flag is turned off
when the next control card is encountered,

If previous control card was an ADD card, correction
factor of one (ISNOF 1) is included in the comparison
of sequence numbers to ensure the validity of the

.

.

. new update number.
*

Flag is turned on if first control card read indicates
sorting of the update cards is desired. Flag is
sensed in subroutine RDTCRD to direct where card

flag on - from memory as directed by retrieval table.
. will be obtained. Flag off - from A2 (input tape),

Internal storage of update data deck during sort
option consists of 9,800) 10 words.

During sorting of retrieval table, three word record
is stored in th4s location. .

Retrieval table consists of 2100),0 words for storage
of three word locator records. Word one is always
zero. Sort option.

Same as LARD but for tape records.

Working value converted to binary of sequence update
numbers on control cards.

Fourteen (14) word buffer for card image in memory
during input/output and card interpretation.

Fifteen (15) word on tape being read, is compared .
with input control card number 'LAM' to find place
on tape to update.

1-4l

NAME

LNCNT

DESCRIPTION

Counter for printout and paging.

LSKIP

LTAP/MTAP

Same as LAM but only used during delete.

Internal memory to retain information listed in
CC 67-80 of first control card. Each time a title
is printed for a new page, the information into
these word8 is printed on the LH top of page.

4

. .

i
. .

1' .

. .

. .

. .

. .

. .
1-42

SECTION

NAME/TIME CARD GENERATOR PROGRAM

, CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

\

.

NAME~TIME CARD GENERATOR PROGRAM

. .

L
AUTHOR: A. R. Stone

' Convair division of General Dynamics

PURPOSE: The NAME/TIME Card Generator Program compiles a list
of variables from the equation cards of a system model,
determines the required timing, and classification data for
each variable in tde list, and punches this information on
cards to create the time card section for the model.

Manual preparation of the time parameter cards for a system
model can involve considerable time and effort. Each
variable that is included in the system model must have a
time parameter card containing its name, its pickup and drop
out times, and an activity code relating to its working state for
Discrete Network Simulation (DNS). If the variable is to be
considered as a candidate for Automatic Malfunction Analysis
(AMA), the card must also contain the hardware classification
code for the variable. Data for time parameter cards is
normally written by the analyst on coding sheets and sub-

' sequently keypunched. Complete and thorough checks through-
out this entire process are required to avoid errors. The
data entries and format for these cards must be accurate if
results from the subsequent DNS and AMA Programs are
to be valid.

The technique utilizing the NAME/TIME Card Generator
eliminates most of the manual effort required to accomplish
these tasks.

memory and consists of the fodowing 6 subroutines:
STORAGE: The program occupies 42,171) consecutive locations in

2-1

. .
. . . .

.
. .
. . . . I

'
. : . : .

. .
' # :

TIMING:

USE:

1. READ
2. NAMES

3.' NARRING

4. NSORT
5. NTYPE

6. PRINZ

Driver and mode selection
Generation of original tables and
duplicate elimination
Comparison of LH and RH tables for
duplicates, generates third table and
packs LH and RH tables.
Sorts each table in alpha numeric order,
Classification, time parameter and
AMA code determination
Printing of time cards and punch tape
generation

Approximately 500 time parameter cards will be processed
for each minute of 7090/94 computer time..

The Time and Name Card Punch Program can be used in three
distinct modes. Tape requirements and control cards are '
listed for each mo,de.

M o d e l

1. First control card in data deck

Col. 1-6 must have *EQUAT
Col. 7-80 blank

2. Equationcards

3. Immediately following last equation card

Col. 1-6 must have *ENDbE
Col. 7-80 bla&

This mode produces time cards in the format required for
the DNS/Preprocessor Program.

Mode 2

1. First control card in data deck

. . I

. .

. . . .

Col. 1-6 must have *EQUAT
. Col. 7-12 blank

Col. 13-18 must have DTCbbb
01. 19-80 blank

2. Equationcards

2-2.

. 1 . . ' . *

. .

. _ . .

METHOD:

3. Immediately following last equation card

Col. 1-6 ' must have *ENBE
Col. 7-80 blank

The cards are generated in format required for the
DNS/Lbwn Translating and Culling Program.

Mode 3 ,

I.

-
First control card in data deck

CO~. 1-6 must have *EQUAT
Col. 7-12 blank
Col. 13-18 must have BOTHbb
Col. 19-80 blank

2. Equation cards

3.

*

Immediately following last equation card

Col. 1-6 must have *ENDbE

Cards will be punched for both the DNS/DTC and
DNS/Pre-Ed Programs.

The program reads boolean equations from IBM punched cards
and culls out duplicate variables and operators. The remaining
variables are classified and a specific time and parameter card
is punched for use in conjunction with each variable. Initial
processing flags are set to zero and data cards are read until
the beginning of the equations is sensed. A flag is then set for
reference during processing. Format instructions are
obtained from the equation beginning control card and R flag
is set for program processing direction. The difference is in
the placement of time parameters on card image. The Down
Translator and Culling Program time field begins in col. C37
while the preprocessor editor requires time cards with the
time field starting in col. 613.

Control of processing is transferred to subroutine names. The
cards are then read in one at a time, stored, and checked each
time for an end of equations indication. Initial entry flag is
tested for zero, if so, the working cells are set up for names
card processing. The initial entry f lag is then turned on, and
a card counter is incremented. The first word on each card is
sensed for a blank o r initial equation card. Only initial equation
cards will contain data in word one. Finding data in word one,

.

2 -3

. .

I

. .

the program assumes this to be a variable that appears on
the left side of the equation and processes it as such. The
variable is compared to those stored in a table designated
as LNAMS, (left names) to see if it has previously been
encountered. If it is a duplicate, it is stored in a separah
table and an e r ro r count record is incremented.
should only appear once on the left hand (LH) side of equation).

The variable is then stored in LNAMS for LH variables and
the LH names counter is incremented. The remainder of the
card is read and the variables are separated from operators;
one variable at a time. As each variable is located, it is com-
pared with those in the RH names table. I€ a variable is found
to be a duplicate right name, it is ignored and the next name
is obtained from the card. When a period is located o r a total
of 72 card columns have been tested, a new card is obtained
and the same sequence is repeated for each new card until
end of equations is sensed. At the completion of names
comparison, two tables will have been created,

*

(Names

i d

1. "LH names" variables that appear on the left of an
equation with duplicates eliminated and flagged as errors.

2. A list of variables that appear on the right side of the
equation with duplicate variables eliminated.

Program control is then transferred to subroutine NARRNG
where a second pass through the tables is made, this time
comparing the RH table with the left hand table for duplicates.
If duplicate variables are found, they are written in a third
table and the cells in the LH and RH tables that contained the
variables are filled with zeros. After the entire LH and RH
tables are processed, the zeroed cells are eliminated by re-
arranging the variables in each table. Program control shifts
to subroutine NSORT and all three tables are then sorted in
ascending alpha numeric order and each table classified by
variable type.

1. LH variable table contains *terminals*.

2, Table of variables from LH and RH contains.
'transactors'.

3. RH variable table contains 'initiators*.

Each table starting with the 'terminal' table is then processed
to identify the following:

2 -4

I
I
1

I
,

I

j
i
I
I
i
I
I

t

I

,

i I

!
I

!
AMA classification code, (is variable a coil, node, .

I contact, etc.) .
The time sequencing parameters for each type (node,
coil, contact, etc.).

Whether format of card is to be in M'&C (extended)
o r prep-ed (condensed) format.

I
Whether variable is active!or inactive (does variable
change state during a normal simulation o r is its
state constant).

1.

2.

3.

. .

4.

Beginning with the 'TERMINAL' table, each variable is
processed through subroutine NTYPEZ one at a time.
Key words in core are compared with the variable being
processed. When a match is found, an integer representing
the appropriate code, class o r time field is placed in the
assignment key KQDE.

Control is shifted to subroutine PRINZ where the value of
KODE directs the program and selects the correct print
and punch format, and this format is then written on a punch
tape and printed for reference. The completed punched card
will contain the variable name, the time parameters, the
active, inactive code, and the AMA class code. The printout
will be ordered as follows:

1. List of equations.
I

2.

3.

List of program generated time cards for terminals.

List of program generated time cards for transactors.

4. List of program generated time cards for initiators.

5. Number of names processed.

Examples of typical printout generated by the DNS time card '
generator is shown in Figures 2 4 through 2-4. The first listing
is the total equation cards in the order of input as shown in
Figure 24. The *END equations card at the bottom of the
listing indicates that the entire equation deck w m *&.

OUTPUT FORMAT:

Figure2-2is a sample listing of the variables that have been '
classified as terminals. The sub title on the top left of sheet
specifies this fact. To the right of this class sub title is the

2-5

. '

I .

I

1
!

!
i

I

1 ,
i

f
i

0
Q
d
d
0
9 *
a
N
Y
I-
u
\ *
co
d
4L

u +
0

0
9

r-

d
d

I
i
i
i

I
i
1

i

!
I

I

!

!
I

I

I
i
!

e
*I
d
rc

9 *
n

CI

ro
Y m
r-
u *
N
Y
In
IC.
L)
\ +
N

i
i
i

' t

!
I

i

i

I
I

!
t

i
t

i

* .

I

i
I I
I
i
i

i !
i
I
I

e

d
d

0

I

U J .
Z ! ...
W

.
U
IC u
z
U
-I +
a
r-
V z
m
A + . n

d
r *

r=. .-cu
O Y
QP-
* u *

44

- .
. N ' . . '1

i

in
1

i
'a
0

1

v)
0

I
I

v)
d

v)
0

v)
0

v)
0

m

r

I
I
f

I

I

1
I
j

!
I

lcr-
N N * e
Y Y

nn

i
i

4
I

'

- j
I

1
a
0

v)
0

i
v)
Q

v)
0

v)
0

v)
0

v)

i
I
i
1
!

I

. .

,

W
0

a. a

!

v)
0

v)
0

v)
0

v)
0

v)

v)
0

I
v)
Q

v)

3 '

3 k

iil
N

I
N

E:

.:
;
!

!
i

< .
!

i

i

i
i

C
1'
Q

;oI
QI
.si
0
Y

b-

Y, z
0 E

i

2 -7

. . - . . i . . , . I

I ,

. .

. .

. .

. .

. .

number of variables that were classified as terminals. Each
variable is listed two times on the left side of the page, The
first printing is made when the punch tape is written for the
dictionary card. The second printing is a copy of the time
card that wi l l be punched including the time field assigned by
the program and the variables classification coding. Printing
the variable twice as shown provides a listing where dlctionary
data may be written for the remaining portion of the cards for
keypunching. An example of this application is shown for bus
6D121 in Figure 2-2. The transactors and initiators are listed
as shown in Figures 2-3 and 2-4 respectively. Printout for
variables in these classifications is the same as previously
described for sterminalsl.

After all the cards have been printed an account of names
is listed as shown in Figure 2-4.

,

*

2-8

a
In

x

a
In
I
!

u?
m

i
v)
In

x ’

i

a’
a.

i

!
i

u)
In

. i
. a . ‘ . ; . . i
! >

’ I

i

I
i
1
!
I
x

!
a m
i
I
v)
In
!
i

v)
In

v)
In

v) tn

.m m

u)

I

t

I

n n
Y Y
fir-
U V

1 .

v)
In

v)
In

v)
In

u)

i

_ I

. I

I
?

- . .

2
cd . .

B E

c3
I
e4

a
f-
V z
d

I
1
1

i
:*
i

i
f

i
1
U m

i

!
v)

i

t *

i
i

v)
In

v)
In

v)
In

v)
In

v)

I

i

1

9 9
dd
A d
X Y
r-l-
O I O I

I

I
i
i
i ;
!
!
i

i

i

i
I

I

!

M
i . 1'

. . EJ z
UJ
53
'U

* .a .
1

c

i
i
1
I
i

i
!

;
4

i

I

i
i

f
I
i :
I
3

i
i

v) v)
In Q

i

v) v)
ln 0

/ .
v) v)
V I ' R

:

v) in
. c
. i

!

i

I

!

2-10 .

. .

. . F

. .

c

I .

6

Figure A-1. SUBROUTINE READC (1 of 4)

2-13 *

I

Figure A-1. SUBROUTINE READC (2 of 4)

2 -14

T I T L E PAGE

~

' 1 INCREMENT
L I N E COUNTER

INCREMENT
L I N E COUNTER

9

Figure A-1. SUBROUTINE READC (3 of 4)

2-15

ANY ERRORS

< ’ 00.
9

c
SET PROC
SEQ FLAG
= 1 FOR

TERM PROC.

SET PROC SEQ.
FLAG = 5

FOR INJTiATOR
PROCESS I NG

1

Figure A-1. SUBFKIUTINE REAM: (4 of 4)
\

2-16

. .

. . '

Q
SEARCH LH
TABLE FOR

I

+
I NCREHENT

CARD
COUNTER f
1' 1 STy!EL!ORD

TABLE
1 COUNTERS
t

-+
tr

DATA I N
1ST WORD

INCREMENT
LH WORD

COUNTER L
STORAGE
COUNTER

SET PERIOD
b, END OF

CARD FLAG
= 9

I 0. RETURN

Figure A-2. SUBROUTINE NAMEZ (1 of 2)

. .
. .

. .
2-17 *

i

Figure A-2. SUBROUTINE NAME2 (2 of 2)

2-18

t d.
I NCR EM EN1
LH NAMES
COUNTER

AND ZERO
RH COUNTER

I

i

Figure A-3. SUBROUTINE N k N Z (1 of 5)

. . 2-19

- ~ _ _ -~~

. .

Figure A-3. SUBROUTINE NARRNZ (2 of s)

2 -20

. . ' . .

. . .
. .

. .
. .

ZERO CELL
WHERE GOOD

HORD WAS

. '

1 NCREWENT
COUNTER

+ 1

Figure A-3. SUBROUTINE NARRNZ (3 of 5)

2-21

. .

. . , . .

Figure A-3. SUBROUTINE NARRNZ (4 of 5)

2-22

0 BLANK

REPLACE
BLANK CELL

WITH GOOD
* I NAME

1
I

. I

+

RETURW

. .

I

Figure A-3. SUBROUTINE NARRNZ (5 of 5)

2-23

,
. .

. . ..

Figure A-4. SUBROUTINE NSORTZ (2 of 3)

2-25

. .
. -

. .

I . . ' ,. . ._ , .

. .

. .

. . . .

..
. .

. .

?

Figure A-4. SUBROUTINE NSORTZ (3 of 3)

2-26
.-

. '_

, . . - . . .

Figure A-5. SUBROUTINE NTYPEZ (2 of 2)

2 -28

/

Figure A-6. SUBROUTINE PRINX (l of 4)

2 -29

INCREMENT
L I N E COUNTER

+ 2

c

PRINT VAR.

FOR REF.
DlCT IONARY

L I N E COUNTER

SAVE VAR.
NAME FOR

TIME F I E L D
CLASS I F I CAT I ON

Figure A-6. SUBROUTINE PRINX (2 of 4)

2-30 .

PARAWET ERS .

LINE COUNTER

,

. .
Figure A-6. SUBROUTINE PRINX (3 of 4)

2-31

Y

. .

J

Figure A-6. SUBROUTINE PRINX (4 of 4)

2 -32 .

ir

'c

APPENDIX B

! GLOSSARY OF TERMS

. .

1.0 INDEX OF VARIABLES

The following is an alphabetical listing of the terms used in the NAME/TIME -Card
Generator Program.

- NAME DESCRIPTION

INAC
KARD
KENDS
KIND
KODE
LCARD
LHE .
LHERR ,

NAMCT
NAME.
NCOM
NDFG
NLIKE
NNDF
NPAG
NTES
IND
NCT
,mQF

. .

Status flag.
Card input buffer.
Storage block end. ,
Time card format flag.
Time parameters key.
Storage cell.
LH names count.
Storage cell.
Names count.

. Storage block.
Transactor count.
Process start flag.
Storage block.
Name end flag.
Page count.
Name in process.
Transfer indication.
Print line count.
Eqdtions in process.

*

2.0 DE FINITIONS

' NAME DESCRIPTION

Used as a flag to signal variables whose time cards
are to be coded inactive. The variable name is tested
for presence of specified hardware code letters. If
a match is found, the flag is set to one. For all other
hardware codes, the flag is zeroed.

INAC
. .

2 -33

*

NAME ,

KARD . .

KENDS

KIND

KODE

LCARD

LHE

LHERR

NAMCT

NAME

* "

DESCRIPTION

Fourteen word input buffer for temporary storage of
data read from the control and equation cards.

Not used.

Used as a flag to signal the type and format to be
used in preparing time cards. If time cards are
to be used directly with the Preprocessor Program,
ISIND is set to zero. If time cards are to be used
with the DT&C program, KIND is set to one. If -
individual time cards are to be prepared for use with
both the DT&C and Preprocessor Programs, KIND
is set to two. Value to be assigned is signaled by
keywords on the *EQUATION control card.

Used as a flag to signal which hardware code and.
which group of prespecified pickup and dropout times
are to be assigned to a variable's time card. The
variable name is tested for the presence of prespecified
hardware type code letter. If a match is found, the
flag is set to a value corresponding to the particular
code letter. If no match is found, the flag is set to zero.

Used to store the sequence number (position of the
card in the equation card deck) of an equation card
which was found to contain a left hand name that had
been encountered previously.

Counter for counting and storing.

Storage array for storing up to eight (8).left hand
names, should names be inadvertently duplicated
or mispelled

Multipurpose counter used first to count the number
of unique names encountered on the RH sides of the
equations, second to count the number of initiators,
and third to store the total number of names processed.

Storage array for storing initially the unique list of
names encountered on the RH sides of the equations,
and later to store the list of names found to be initiators.

2 -34

NAME DESCRIKTION

NCOM Common location for storing the total number of
variables found to be transactors.

Storage array for storing the list .of names of
variables found to be transactors.

Entry flag used after initial entry to signal sub-
sequent entries that storage registers and counters

NLIKE

NDFG

' have already been initialized.

NNDF Flag to signal end of current equation card field
(either 72 or a period) has been encountered.

Flag used to signal that the equation card deck is
being read and processed. The flag is set to 1
when the '*EQUATIONS' control card is encountered,
and re-zeroed when the '*END EQUATIONS control
card is encountered.

NEQF '

*

-

I .

- .

2-35

SECTION
r’

DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM

CONVAIR DIVISION OF GENERAL DYNAMICs CORPORATION

. .
. . .

. .

. .
. .

DNS/ATOLL INPUT CONVERSION AND PUNCH PROGRAM

AUTHOR: A. R. Stone
Convair division of General Dynamics t

PURPOSE: . To utilize the Discrete Network Simulation (DNS) Programs
for test procedure verification, it is necessary to derive
driving functions for use with the Simulation Program from
the ATOLL test procedure itself. This program uses the
following techniques to simplify the generation of input data.

1. Read the ATOLL test tape and identify all necessary
data required for DNS input.

2. Convert this data into a format that will be compatible
with DNS.

Punch IBM cards containing the DNS driving commands.

Provide necessary written instructions to insure manual
inputs are accounted for in DNS simulation.

The program must run on an IBM 7094 with IBJOB
systems capability.

In addition to system input and output, two magnetic
tape units are required for BCD tapes.

A maximum of %en tests may be processed during
one computer run.

3.

4. I

RESTRICTIONS: 1.

2.

3.

' 4. The program was designed for use with ATOLL
card image provided by Boeing or IBM.

/ STORAGE: .

TIMING:

USE:

The program, including files will start at location 02720
and continue through location 23253. It contains 8 sub-
routines as follows:

1.
2.
3.
4.
5,
6.
7 .
8.

CONTRD
KAT LT
KATRG
KONVRT
NBRANZ
NIDEX
READCD
TIMEZ

Driver
General ATOLL card image processing
Variable and case, identification
ATOLL step identification
Test procedure branch identification
IDA No. conversion
Control card reading and interpretation
Processing of time field on ATOLL tape

Program will generate input data for the DNS Simulation
Program at approximately 1000 lines per minute. Each
line (or card) represents either an input equation or a control
card. The output per minute increases as the number of
inputs associated ,with an ATOLL instruction increases.

A typical operation deck set up for using this program would
be as follows:

$JOB
9

Binary program deck
$DATA
Job specification card
718 (EOF)

Job specification card

col. 1-2
Col. 3
Col. 4-5
Col. 6
Col. 7-8
Col. 9
Col. 10-12

Col. 13-72

Zero o r blank
Zero o r integer 1 (1, scan times to be used)
Zero or blank
Integers 1 o r 2 (1 = IBM, 2 = Boeing)
Zero or blank
Integer 2 o r blank (2, List on Save Tape)
Number of IDA'S to be processed - right .
adjusted to Col. 12.
IDA numbers prefixed with "DA." from IDA
e.g. MOO2 or blank.

. .

3 -2

I
. .

System Function .Tape . . . Fortran hg ica l

8 A 5 ' ATOLL test proe.
11 B6 BCD Save (in lieu

of punch cards)

METHOD: . The input conversion and punch program processes
ATOLL test procedure card image tape records. The
records are read and processed case by case until an end .
of record is encountered. The first case consists of the
data starting with the initial ATOLL input (DISO o r SEMI)
operator encountered, and ending with the first succeeding
ATOLL Y3can" operator. Each succeeding case starts with
the first input (DISO or SEMI) encountered after a preceeding
Wcantt operator, and ends with the next "Scanqt operator
encountered. The combined ATOLL step and substep
numbers at which each new "first input" occurs become the
unique identifiers for signalling the start and end of each
case in creating the DNS inputs. (In the succeeding comparator
program, these unique step-substep numbers are used to
co,rrelate the simulation results with the ATOLL predictions
on this tape). Any input data contained between these ''case
controls" is identified, converted, and sequenced to create
the inputs for driving or stimulating the DNS model.

1.

I

The control card is first read to determine the format
of the ATOLL input tape (LBM o r Being). The type of
output to be created (tape o r punched cards), and the
number and names of the test procedures to be processed.

2. The ltIDA's yet to be processedt1 counters and control
flags are set up. If IDA'S remain to be processed,
proceeds to 3. If no more IDA'S left, cleans up and
exits from the machine. I

3. The file flag and entry flags are reset for the start
of the test procedure.

4. Each ATOLL record (14 worq is read, one record at
a time. If the "file foundtt flag has been set, the processing
skips to 5.

3-3

Checks for current IDA number o r name in IBM
o r Boeing format depending on setting of Ynput
format flag". When correct IDA is encountered,
a "file foundff flag is set to bypass this portion of
the program, and a tfcontrol flagf' is set to normal
value. If correct IDA number is not found in ted
names records, the %ontrol flagft is set to
"error valueff, and processing is terminated.

h\

J

i
A.

5. 4: I If IBM format, skips to 6.

A. If Being format, checks for presence of a block
operator. If none, skips to 6.

If a block operator is found, processes current
block number as set by tfoutput listtf flag, and '

returns to 4.

B.

0

6. Checks for presence of an END operator. If none,
skips to 7.

A. If an END operator is found, processes the END
record as set by the lfoutput listft flag, and cleans
up for return to 2. I

7. Checks for presence of any one of a preset list of ATOLL
operators. If one is found, Skips to 8.

A. If miscellaneous operator, checks and updates
step-substep number if required, and returlls 4.

8. Updates the step-substep number and proceeds to
appropriate sections as follows:

A. If ATOLL operator is a DLCSO, goes to 9.
SEMI, goes to 12.
TEST, goes to 13.
SCAN, goes to 11.

. .
9. If ATOLL operator was a tfDISO1*t o r tfDISOO1', sets

a value flag and checks to see if this is the first new
input encountered.

. .
A. If not the first, SUPS to 9C.

B. If first new input, sets ''new starttt flag on and
processes a new DNS *STEP record for this
step-substep number.

If t'DISO inputtf flag on (a ttDISOtt has been
encountered before) Skips to 9E-

If this was first new DISO operator, processes
new DNS clock input time for start of ease, and
sets ttDISO inputt1 flag.

If no time field data encountered, zero's time
flag and Skips to 10..

If timing data encountered, sets "time flagtt,
converts time to binary o r storage, and proceeds
to 10.

C.

D.

. E.

F.

10. Identifies the discrete outs listed in the variables field,
checks value flag, and formats and stores the DISO
Llitmes, values, and current DNS clock time in print
storage. If "time flagtf is off, skips to 1OB.

A. If Wme flagtt is one, also stores Dtko names and
opposite values in temporary storage.

i

B. If end of data or end of variables field, returns
to 4. . .

C. If continuations, return.to 10.

11. If "scan time flagt) is off, skips to 11B.
. I

A. If time field data is present, converts time to
binary for scan storage.

If no inputs have been encountered, prints out
message with step and substep, and skips to 4.

If Itnew case in progresstf flag is on, processes
Ifprint storage" inputs in DNS format,

B.

C.

D. If "SEMI flagtt is off, Skips to 11F. .

E. If WEMI flagtt is on, processes 'print SEMP
buffer in DNS format, and zero's WEMI flag".

3-5

F.

G.

If DISO);time flagr1 is off, skips to 11H.

If DISO "time flagt1 is on, updates DNS clock time,
transfers DISO names and values from temporary
storage to print storage with updated times, zero's
"time flagtt and returns to 11C.

If "scan time" flag is off, ends case and skip8 .
to 4.

If %can time" flag is on, updates DNS clock time
by adding scan duration time, ends case, and
returns to 4.

.

H.

I.

. . i

12. If ATOLL operator was a SEMI instruction, checks tQ
see if this is the first new input encountered. If "new
start" flag is on, skips to 12B.

A. If "new 'Startll is off, sets "new startt1 flag on and
processes a new DNS *STEP record for this
step-substep number, processes the variables
field in DNS input format, increments DNS clock
input time, and returns to 4.

If "DISO inputt1 flag is on, skips to 12D.

If "DISO input1* flag is off, and no predictions

B.

C.
have been encountered, process variables field
of record into DNS format, and return to 4.

D.

E.

If "PRINT SEMItt buffer is already full, skips to 4.

If "PRINT SEMIt1 buffer is empty, store variables
field in print SEMI, and return to 4. . .

. .
13. If ATOLL operator is a test instruction, checks to see if

"new start" flag is on. If Itnew start" flag is on, skips
to 13B,

A. If "new start" is off, sets "new start" flag on,
and processes a new DNS *STEP record for this
step-substep number before proceeding.

Writes out the branching data in the variables
field, and returns to 4,

B.

. .
. . .

OUTPUT FORMAT:)!

. . I

. .

. I

I

1

,

Figures 3-1 and 3-2 illustrate the type of printout
generated by the ATOLL to DNS Conversion and Punch
Program. The numbers of the IDA'S for IBM tape and TP's
for Boeing tapes will be listed as shown in Figure 3-1. Only
one IDA is listed in this example but if additional IM's were
being processed they would be listed at this point also. For
each IDA list a separate printout will be made similar to the
example shown in Figure 3-1.

The word *NAME and IDA 1003 is listed as extracted from
the UBM tape for reference and is preceeded by a single
asterisk. The test procedure step number is listed following
a single asterisk. Cards for these single asterisk comments
are punched but are handled by the DNS Simulation Program
as comments and are to be used for reference only.

Three asterisks indicate a manual check of the test is to be.
made to ascertaiwthe mode of simulation corresponds t6
mode of test and that appropriate inputs are added as required.
The actual inputs are listed without any preceeding asterisks
as shown, DO34 =1 at 50.

Punched cards that require removal from the input card deck
are "Input Requirement" type comment cards. Inset 7 card
columns the comment "INPUT REQ-T" (requirement) will
appear followed by a comment. The sixth line of the printout
is shown in Figure 3-1 which calls the users attention to the
fact that at this point in the test procedure, an input not
automatically generated, is required to start power supply
6D100. Investigation reveals that in this case it is a manual
push button. Therefore the comment card is removed, and a
new card inputting the required push button will be inserted
in its place.

A sequence number is assigned to each card that is punched
as shown in-Figure 3-1. In event that any such inputs require
more than one card to replace the comment card, it would
be advisable to insert all changes to the Update Program to
ensure a new sequence number. Present DNS/simulation
requirements do not merit a change from punched card driving
inputs. The input conversion and punch program was written
with future applications in mind where tape inputs would be
a necessity or beneficial.

. .

3-7

. ..

IC

U '
W
v)

a
I u c
3
m
e
w
3
a
I+

c
3
Q
I-
3
a
0
0

9

U

F 4
n

c
I
0
W
OT

c
3
Q
2
Y

* .-. -
l i

' Y

?
1'

c
<
C
U

C

c

?

3
U
3

3
2

3
3

.I

9
Z

JJ

n

a -

*

m

0
w
m

I

1

0
In

t- a
rl

If

*-
m a
0

U
n

n
3
3
n a
3
4

u
z
z *
a

*

w
Y,

c,
0
0
N
0
0'

161
z
Q
W
c
v) *

*
_ .

fib
0
k a
r:
0
rn
k

.rl

I!

4 4
8

0
0

1 c,

'3 m
.rl
4

r
I
3 . .

3 .
0

c
VI
u1
c

1 %
Y ,

-. .

' 3-8

. .

. .
. .

. .

. I.

, .
. .

.
A summary of each IDA is listed. Each "CASE" is from
step number to the last DO input prior to the next step
number. The number of cards punched are totaled, The
*END data card is required to make program compatible
with the Update Program and will .only appear after the
final IDA, if more than one is processed. Figure 3-2 represents
the final portion of the test procedure generated inputs. The
word *END signals the termination of the data for the DNS
simulation. '

. .

. .

3-9

. .

a
0
In
I n x
I n u
o z

a z c
a s
u1
I - c
m u , *

* *

*
9
6

0
W
u,

I

I '

i
1

i
I
I
I

I
i
!

I

1
i

I
i
I
ir:

I

i

iz
In
0

m z
h
UI
t-
Y, *

*

a' e.

a
a

x ;

a2

Y

U J . +
* *

h
U I '

v)
c '

h

h
3

I
U
3

e
3
n
9
x)
v

-
a
r4

II

.;t
P
N
cil
0

3

Ir

3
U
n

c

0

0
D
F
Po
N

I-

0

II

a

.5
f-
N
rp
0

3 -10

_.

Q

h

3
U
0

II

i

0

0
F
in
N

n

I-
U'

0

I1

In
I-
N a
n

t
F

I
U
n

..

0 z
W *

*

, .

I .

. .

REWIND
SAVE TAPE

I . .

UPDATE
IDA I N
PROCESS I NUMBER

-8
SET PROC.

CONTROL FLAG
= 1 FIRST PASS

Figure A-I. SUBROUTINE CONTRD (l of 2)

. * ,.

w

. .

Figure A-1. SUBROUTINE CONTRD (2 of 2)

. "'

Figt.11'8 A-2, SUBROUTINE KATLT (1 of 23)
. .

3-15 ,'
&

3 Figure A-2. SUBROUTINE KATLT (2 of 23)
9.

3-16

. r _.. . #,(, ,

.

..

i t '
/

SAY€ #OR0

8 (BLOCK NO.)

Figure A-2.. SUBROUTINE KATLT (4 of 23)
. . -

3-18
I

\

1

. .

. .
. .

. I

. .

Figure A-2. SUBROUTINE KATLT (5 of 23)
. .

3 -19

... .
. .

Figure A-2. SUBRQUTINE KATLT (7 of 23)

3 -21

4

Q)I

Figure A-2. SUBROUTINE KATLT (9 of 23)

3 -23

' PDF S f l
= 2

dl

PRINT TEST
ENCOUNTERED

l NCRMENT
L I N E COUNT

*

t

Figure A-2, SUBROUTINE KATLT (10 of 23)

3-24

. .

Figure A-2. SUBROUTINE KATLT (11 of 23)

3-25

I

REPLACE
PREY. TIME
WITH CLOCK

I SET Do
INPUT FLAG =1

. .
. - t

-: . .
. .

. .

!

Figure A-2. SUBROUTINE KATLT (14 of 23)

3-28

!

' ,

DI El VARIABLE
WORKING FLAGS

Figure A-2. SUBROUTINE KATLT (16 of 23) ' -
3-30 . . .

3 -31

1 .

- .
I . 1

I

. *

i

. .

\

* . .

Figure A-2. SUBROUTINE KATLT (19 of 23)

3-33

.. .

. .

t

I

Figure A-2. SUBROUTINE KATLT (20 of 23)
. .

Figure A-2. SUBROUTINE KATLT (21 of 23)

3-35

. - , . . .
. .

. 1

. . .
. . . .

HRITE
SEMI MESS
ON PUNCH

ZERO SMI
MESS BUFFER

CELLS

. . . .

. .

I NCREHENT '

SEQ. NO. +1

. .

I

LOCATED FLAG

MESS I N TEMP

. .

I

*

REF. INPUT AT
TiME FOR XRITE =

-Figure A-2. SUBMUTINE KATLT (23 of 23)

3-37

e - . . . ,

, ..?,
’

GET ATOLL HORD

~

INCREMENT

COUNT

I t---
I N PROGRESS

Figure A-3. SUBROUTINE KATRG (1 of 3)

3-38

’..

B
,-

Figure A-4. SUBROUTINE KONVRT (1 of 1)

3-41

. . .

* .

. .

Figure A-5. SUBROUTINE NIDEX (1 of 1) -
3-42

i
4 .

I

,

I

I

I

h

-Figure A-7. SUBROUTINE READCO (1 of 1)

3-44 I'

i

SHIFT CURRENT
IN ATOLL RECORD TIME 1 CHAR.

SHIFT CURRENT
TIME 1 CHAR.

9

Q

Figure A-8. SUBROUTINE TIMEX (1 of 1) .

. .
3-45

.

.
. .

.*

APPENDIX B

GLC)SSABY O F TERMS

i

1.0 INDEXOFVARIABLES . .

The following is an alphabetical listing of the terms used in the Input Conversion
andPunchprogram. . .

NAME'

IBMF a *

IDA
INTIM
JQPT .
KADO

. KAm
KADV
KAFG
KAWDS
KBUF

. KCAS
KDIF
K W F
ICDOS

' ' KDIF
KENDF
KENF
KINF
KNUF

. KNUM
KQNF

' KRDF
KSEMI

KTIM
KTRL
KWD

' KYPE

*

=EQ ,

. .

DESCRIPTION

Format flag.
Test number .
Input time buffer.
Scan timing code.
w list.
Input time.
Input value.
ATOLL'file flag.
ATOLL input buffer..
SEMI I/O buffer.
Case count.
Spare.
DO value flag.
Case input count.
DO time flag.
ATOLL end data flag.
ATOLL DI found flag.
ATOLL W found flag.
ATOLL name process flag.
ATOLL W name.
ATOLL record continue flag.
ATOLL case flag. .
SEMI found flag.
Sequence count.
Time transfer word.
Processing control flag.
Time format selector.
Tape format flag.

! . .

MADV
MDOS
MNT
NISCAN

' ' MTIM

DESCRLPTION

Print line count,
Save tape flag.
Scan time flag.
Step number.
Case start time.
Cycled input list.
Number cycles.
Cycled input count.
Number IDAS in run.
ATOLL scan duration,
ATOLL DO duration.
Time correction factor.
Test name.
Block number.
NBRANZ call flag,
IDA end flag.
Test word.
IDA number *
Page count.
Case flag,
step number.
Search count.

DESCRIPTION '

I JBMF A word in common block/ISPEC/ used by the

. .

. .
. .

program as a means of selecting alternate groups
of instructions for processing certain ATOLL
format or style differences between Boeing and
IBM test procedures. The flag is set (by means
of the control card) to 1 if the ATOLL tape to be
used is an IBM tape. If not, the flag is zeroed.

A 10 word array in common block/ISPEC/ used to
store any (up to 10) ATOLL test procedure names
which a re to be processed. The names (ID'S) are
stored here as 6 character BCD names exactly as
they appear in the data field of the control card.

.

3-48

. .
. -

. . .

INTIM A word in common block/MCAS/ used to store
the current input time (simulation clock time)
which will be assigned when a variable's input
equation card is processed,

JOPT

' . KADO

A common block of 14 words used to store the
contents of the f i r s t control card. The array
contains JOPT, KYPE, LTST, MNT, and10
I M locations.

A word in common block/ISPEC/used for setting
a value into LSFG if the timing data on ATOLL
tlSCANtl records is to be processed. The value '

is obtained in subroutine READCD when the
control card is read.

A 20 word array in common block/KADOS/ used I

for storing the names of any ATOLL discrete
outputs encountered when processing ATOLL
t'DISO 0" o r tlDTSO 1" records during a case.
The prefix ltDO1t is stored as two BCD characters
left adjusted in the word. The numerical DO
designation (from 1 to 4 BCD characters) is left
adjusted to the prefix and the remainder of the ~

word is filled with blanks. The array is zeroed
at the start of each case.

KADOS A common block containing counted KDOS, 20 KADO
locations, 20 KADV locations, and 20 KADT
locations used for storing ATOLL discrete output
data during a case.

A 20 word array in common block/KADoS/ used
for storing the simulation clock (input time) to be

'

KADT

K&DV

associated with a particular discrete name in array
KADO. Each word is in binary format, and is zeroed
at the start of each case.

A 20 word array in common block/KADOS/ used
for storing the BCD value to be associated with a
particular discrete name in array KADO. Each
word used is in the format = 1 ATt1 or = 0 ATt1,
and is zeroed at the start of each case,

* NAME DESCRIPTION

KAFG

KATRL

KAWDG

A word in common block/KNTRL/ used as a
flag to signal that a particular test procedure is
in process on the ATOLL tape. It is set when the
particular test procedure name (NIzr) has been
located on the ATOLL tape, and zeroed out when
a subsequent ATOLL llENDfl record is encountered.

A common block containing 8 words o r flags used
for controlling the reading and processing of the
ATOLL tape. It contains KRDF, KONF, KENDF;
KDOF, KDIF, KDTF, KNUM, ISNUF.

A common block containing 14 words used as the
input bufEer for storing each 14 word ATOLL tape
record as it is being processed.

+

KBOT A test word in subroutine KATLT used for identifying
AT0 LL %OTBtl records.

A 5 word array in subroutine KATLT used for
temporary storage of the variables field of ATOLL
VEMP records. It is used in conjunction with
internal flag KSEMI, and is zeroed after use.

KBUF

KCAS A word in common block/MCAS/ used as a counter
for storing the current number of ATOLL cases
which have been processed. It is zeroed at the
start of each test procedure.

KDIF

KDOF

A spare location in common block/KATRL/ reserved
for program expansion.

A word in common block/KATRL/ used as a flag
to signal the value of the current ATOLL discrete
output associated with encountered ATOLL
DISC) 0 records, and is set plus for DISO 1 records.

A word in common block/KADIS/ used as a counter
for storing the number of ATOLL discrete outputs
encountered during a case. It is zeroed at the
start of each case.

A word in common block/KATRL/ which is set in
subroutine KATLT if timing data is encountered on

I

3 -50

I .

NAME

. .
. . . .

KEND .
. .

, .' .

. . . KENDF
. .

KENF

KINF

mm

KNT

. KNTRL

KNUF

DESCRIPTION

an ATOLL llDISO 0" o r DISO 1" record. It is
used to signal that the DO associated with that particular
ATOLL operator is a ltpulsedll input, and will
therefore require an additional "restoring" input
equation. The word is zeroed after the record baa
been converted and processed.

.

A test word in subroutine KATLT used for ident*ing
ATOLL 19END1' records.

A word in common block/KATRL/ used as a flag to
signal that all names associated with a particular
ATOLL 'IDISO 09' o r llDISO 1" record have been
processed. It is set whenever an ATOLL "end
of variable field" is encountered o r signaled,

A flag in subroutine KATLT used to indicate that an
ATOLL "DISI 0" or IIDISI 1" record has been
encountered. It is zeroed at the end of each case,

An internal flag in subroutine KATOL. It is set to
1 if an ATOLL l1DISO 0" o r "DE0 1" record is
encountered. It is tested when a case end is
detected to determine how the current case is to
be processed. It is zeroed at the start of a case.

A test word in subroutine KATOL used to identiry
ATOLL "NAME" records.

An internal counter and test word in driver program
CONTRD used to keep track of the number of test -

procedures remaining to be processed. It is set with
the number from control card 1 (MNT) ; and tested
before each test procedure is started. (If zero, the
program exits. If not, KHT is decremented and
a test procedure is set up for conversion).

A common block containing 5 process control flags
(KTRL, IBMF, NSFG, KAFG, ZSFG).

A word in common block/KATRu used as a flag and
temporary character storage cell during the identifica-
tion of names encountered in the ATOLL variables

3-51 "

i

NAME

KNUM

KOLD

KONF

. .

KRDF

KSEMI

DESCRIPTION

field. It is set in KATRG when any of the
characters (0 thru 9) are detected, and zeroed
whenever any other character is encountered.

A word in common block/KATRL/ used as
temporary storage while building up the numerical
name designation for discrete predictions encounter-
ed while processing the variables field of ATOLL
l1DISO 0" o r llDISO 1" records. The word is formatted
in BCD, and wiU contain a 4 character numerical
discrete designation right adjusted and zero filled.
The word is reformatted before storing in ar ray
KADO.

A location in subroutine KATRG used as temporary
storage for the current word in the ATOLL variables
field be'= processed.

A word in common block/KATRL/ used as a flag to
signal that the current ATOLL variables field is to
be continued on the next ATOLL record. It is set
in subroutine KATRG if a continuation character is
encountered, or no field termination characters are
encountered. It is zeroed before each new variable
field is processed.

A word in common block/KATRL/ which is set in
subroutine KATRG during the first entry in a case.
It signals any subsequent entries that initialization
of controls for discrete output data has been
completed. It is zeroed at the end of each case.

A word in subroutine KATLT used as a flag to signal
that the variables field of an ATOLL WEMP record
has been stored in array KBUF for subsequent
printout at the conclusionof a case. It is zeroed
at the start of each case.

A word in subroutine KATLT used as a counter for
storing the sequence number assigned to each input
card processed by the program.

3-52

. .
I ' . NAME

, KTIM

. . .
.

' :* .

KTRL .

DESCRIPTION

A, word in common block/MCAS/ used as tenyporary
storage by subroutine TIMEZ during the processing;
of the timing data encountered on ATOLL records.
It is used to store the timing information converted
to binary format, and is zeroed after return to the
calling routine.

A word in common block/KNTRL/ used as a
processing status flag. Its value is returned to
CONTRD as 2 for all normal returns. If its value
is 10, a processing e r ror has been detected, and the
program is set to dump and exit.

.

' KWD

KYPE
i

LCT

LETF

' i s encountered.

A word in common block/ISPEC/ used to signal
the program that the converted inputs from the
ATOLL tape are to be stored on an output save
tape instead of the system punch tape. It is set in
subroutine R E D D when the control card i s read.

LIST

A word in subroutine KATLT which is set to I if
the accumulated internal "simulation clockft time
INTIM (in milliseconds) exceeds 15 minutes. It
is used as a key word for selecting an alternate
format for processing any subsequent input equation
cards.

A word in common block/ISPEC/ used to signal the
value to be assigned to ATOLL format flag IBMF,
The value assigned to KYPE is taken from control
card 1.

A word in subroutine KATLT used as a counter for
the lines of printout on a page. If the line count
exceeds 50 when printing the input equation, a new
page is numbered and titled.

A word in subroutine KATRG used to store and
signal when any character other than a number or
a control character has been encountered while
processing the variables field of an ATOLL record.
It is zeroed whenever a number o r a control character

NAME

LSFG

INTIM, and KTIM. These words are used as case
and time control words during the processing of a
test procedure. They are zeroed at the start of each
test procedure.

' ' UTEP

DESCRIPTION

A word i ~ i common block/KNTRL/ used in sub-
routine JATLT to signal that timing data
encounter(on ATOLL flSCANff records wi l l be
processed and used to update the internal
%imulation clock" INTIM. Its value is set in
subroutine READCD from the contents of JOPT,

A word in common block/NSTEPS/ used in sub-
routine KONVRT to store the current test step
number. It is formatted in BCD for use when .
printing out explanatory messages, and is taken
from word 1 of each ATOLL record.

LSTIM A word in subroutine KATLT used to test, update
if required, and store the "simulation clocktf INTIM
at the start of a new case. The contents represent
time in-milliseconds and are in binary.

t

MAD0 A 20 word array in common block/MADOS/ used as
temporary storage for names of Do's which were
indicated on the ATOLL record as being t1pu2sed*t,
signals. Each word is formatted in BCD, and is
transferred to array KADO before printout. MAD0
is zeroed at the start of each case, and is used in
conjunction with counter MDOS.

. .
.

3-54

NAME DESCRIPTION

. .
MNT

. . _ '

A word in common block/ISPEC/ used for storing
the number of test procedures which are to be
processed during the run. Its value is set in
subroutine READCD when the control card is
read.

A word in subroutine KATLT used as a flag and
temporary storage for timing data encountered with'
ATOLL llSCAN1l operators if the flag ISFG has been

. set. If LSFC is set, any timing data which is
identified (by subroutine TIMEZ) is placed in MSCAN
for updating the current lfsimulation clock" INTIM,
MSCAN is zeroed after use.

MSIGN A word in subroutine KATRG used as an internal
flag to signal that the current discrete name being
processed was preceeded by a minus sign. (The
value assigned to this particular DO wiU be
reversed from the value signaled by the ATOLL
operator).

A word in subroutine KATLT used as a flag and
temporary storage for pulse timing data encountered
with ATOLL llDISO 0" o r llDISO 1" records. Any
timing data encountered for DO'S which are ffpulsed81
signals is converted in subroutine TIMEZ and
placed in MTIM for updating the "simulation clockt1
when the DO llrestoringl' input equations are
processed. MTIM is zeroed after use.

A word in subroutine KATLT which contains the
fixed octal equivalent of 900,000 milliseconds
(15 minutes). It is used as a test word for determin-
ing if the accumulated %imulation clock" INTIM
reaches this value during the test procedure. If so,
an alternate simulation input format is used, and
INTIM is restarted from zero.

A word in common block/NAMS/ used for storing
the name of the current test procedure. It is set
in subroutine DNSINP, and is formatted in BCD
for use when printing out the title heading.

.

MTIM

MXTIM

NAM

.

3-55

I .

NAMS A common block containing 4 storage locations for
test procedure identification and status data. It
contains NID, NAM, NBIBC, and NXTB.

NBX3C A word in common block/NAMS/ used for storing
the current test block number. Its value is set in
subroutine KATLT with data from the variables
field of ATOLL llBOTBtl records, and is formatted
in BCD for use when printing out the equivalent,
simulation tlBZX)CK1l inputs.

NBRAN

NCAS

b

NEXT

NID

NPAG

NSFG

The Call for subroutine NBIWNZ used in subroutins
KATLT when processing ATOLL '%est1' records
with branching data,

A wordjn common block/MCAS/ used as a flag for
storing the current status of program processing.
Its value is set to 2 in subroutine KATLT to signal
that the current ATOLL procedure IIENDtl record has
been encountered and all inputs have been processed.
It is zeroed at the start of each test procedure,

A word in common block/NSTEPS/ used as a flag
to signal that the first word of the current ATOLL
record contains a step or substep number. It i s
set to 9 in subroutine KONVRT if step-substep data
is present. If the first word is blank, o r is a
comment, NEXT is set to zero.

~

A word in common block/NAMS/ used to store the
identification word for the current ATOLL test
procedure in process. Data for the word is obtained
from the current position in array IDA, and is
formatted in BCD.

A word in subroutine KATLT used as a counter for
numbering pages when processing program results
for standard output printing. It is zeroed at the
start of each test procedure conversion,

A word in common block/KNTRL/ used as a flag in
subroutine KATLT to signal that a simulation.T3TEP"
input card has been processed and initialization for

,

3-56

. .

. . NAME DESCRIPTION
I

the start of a new case has been completed. It
is zeroed at the start of a case, and is set when the.
first ATOLL, DISO, SEMI, o r TEST INSTRUCTION
is encountered.

A word in common block/NSTEPS/ used for storing
the combined step/substep corresponding to the
current ATOLL record being processed. The word.

The word is used in processing the SIMULATION
"STEP" records. (These become the correlating
links when the processed inputs are used to drive a
DNS model of the system under test and later for
comparing the results of the simulation with the
predictions on the ATOLL tape).

A 3 woqd common block containing NSTEP, NEXT,
and LSTEP. It is used for storing test procedure
step and substep data.

A word in common block/NAMS/ used as a counter
in subroutine KATLT when searching the ATOLL
tape for a current test procedure name. If the
count exceeds 10, processing is discontinued and
KTRL is set to 10 to signal a DUMP and EXIT.

NSTEP

, is in BCD format and is setup in subroutine KONVRT.

'

.

NSTEPS

NXTB

I
*

. .
. .

3-57

. *

.

. .
. .

. .

. . ,
:

* .

. .
. .

: : . . . - .

SECTION

c

DNS COMPARATOR PROGRAM

. .

CONVAIR DIVISION OF GENERAL DYNAMIbS CORPORATION
I

DNS/ATOLL COMPARATOR PROGRAM

1 .

AUTHOR:

PURPOSE:

RESTRICTIONS :

STORAGE:

A. R. Stone
Convair di&ion of General Dynamics
Huntsville Operations
11 November 1967

THE DNS/ATOLL Comparator Program was developed 88 part
of a test proceduke validation technique based on Discrete
Network Simulation (DNS). The Program correlates and
compares the results contained on the output tape from .
a test procedure Simulation with the equivalent discrete
predictions contained on the ATOLL card image tape for
the particular test procedure. It produces a listing of
discrepancies identified to particular test steps, and a
listing of any modeled components in the system which
were not actuated o r exercised during the test.

1. The program must run on an IBM 7094 with IEkJOB
systems capability.

,

2. In addition to system input and output, two magnetic
tape units are required for BCD input tapes.

3. A maximum of ten tests may be processed during one
computer run.

4. The maximum number of discrete predictions in any'
one step is limited to 100.

The program and its associated buffer storage area extends
consecutively from core location 3046)8 to 25777)8. The
program consists of the following fourteen subprograms:

4-1

Driver (Fortran IV).
Formats step and substep data (MAP).
Reads and identifies records on
simulation output tape (Fortran IV).
Identifies, processes, and stores
discrete inputs and values from the
simulation (MAP).
Identifies and stores any redundant
discrete outputs from the simulation.

Reads and identifies records on the
ATOLL card image tape. (Fortran N).
Identifies, processes, and stores names
and values of ATOLL discrete predictions

(MAP)

(MAP)
8. KEPCKZ Identifies and updates step/substep key

word for DNS and ATOLL tape corre-
* lation (MAP).

9. CHEKZ Controls data comparison and prepara-
tion of results for printing (Fortran nr).

10. COMPAZ Compares names and values of discretea
and identifies any differences (Fortran
w-
Reformats test procedure identification
for DNS/ATOLL compatibility (MAP).

names and values for printout (Fortran

11: NIDEX

12. PREPAZ Reconstructs and formats discrete

N).
I

13. PRINZ Prints discrepancy headings, discrepancy

14. READCD
lists, and messages. (Fortran IV).
Reads program data control cards
(Fortran N). i

The program processes approximately 3000 tape records
(1000 ATOLL and 2000 DNS tape records) containing an aver- .

age of 120 ATOLL steps and 60 DNS case histories per minute.

1. CONTRD
2. CONVRT
3. DNSINP

4. DNSRDG

5.. DOSRDG

. .
6. KATLT

7. KATRG

t . .
*

,

.:.I

TIMING:

. USE: A run request, two magnetic tapes, and two program control
cards are required to set up the program for operation. The
two particular tapes to be compared will be designated on
the run request. The first of these tapes is an ATOLL BCD
card image tape for a selected test procedure, o r group of
test procedures. The second tape is a simulation BCD out-
put tape previously created by stimulating a DNS model of the

4-2

. .

. . . .

system under test with driving functions derived from the
ATOLL card image tape. (Refer to Section 3, DNS/ATOLL
Input Conversion and Punch Program) A typical operation-
al card deck setup is:

$JOB
$PAUSE Mount tapes.
$ATTACH A5 (ATOLL card image)
$As SYSCKl ,HI
$ATTACH B6 (simulation output)
$As SYSUTG, HI
$EXECUTE IBJOB

(DNS/ATOLL Comparator Program Binary Deck)
$DATA
CONTROL CARD 1
CONTROL CARD 2
(Card 2 continuation cards if required)
7/8 end of fiie

$IBJOB Go

Control card usage is as follows:

Card 1 - Job specification card always required.

Col. 3 '

col. 4, 5
Col. 6

Col. 7,8
ai. 9

Col. 10 thru 12

Col. 13 thru18

' . .

Col. 19 thru25

Col. 26 thru 72

Blank (unused spare)
Blank
1 o r 2 (to designate type of ATOLL
tape - 1 is for IBM ATOLL format,
2 is for Being format).
Blank
0 or 1 (to specify whether simulation
state lists are to be processed - if 0 ,
skip; if 1, process)
Integer number between 1 and 10 to
designate the number of test procedures
to be compared during this run.
Identification number of first test pro-
cedure to be processed. The identifi-
cation will be formatted the same as
identification contained on the simulation
output tape.
Identification of second test procedure
if included. .
Up to 10 additional test ID'S if
needed.

I

4-3

Card 2 - Ihta definition - always required,

Col. 1 thru 4

(Col. 5 thru 80)
. COL 5 t h 8

9 12
13 16

A number between 0 and 200, right
adjusted, to designate the number,
if any, of ATOLL discrete inputs
which are to be excluded from the com-
parison. If none are to be excluded,
Col. 4 must contain a 0 ,

(Blank if Col. 4 is 0)
(Numeric identifier of f irst DI,
2nd DI, etc. , depending on number of
discretes designated, and extending
from Cols. 0 thru 80 of succeeding cards

METHOD:. * A.

. .

B.

. .

as required to list the required number
of DI numerical identifiers.)

The program first reads the two control cards. It uti-
lizes the first control card to determine the type of ATOLL
format it will encounter, the test procedures to be proc-
essed, and whether any unused components are to be listed
at the end of the test comparison. The second control
card signals whether any discrete' inputs (DI's) are to be
excluded from comparison (such as "Don't care DPs",
o r external discretes not incorporated into the DNS ~

model). If DI's are to be excluded, the number and
designations of the DI's are read, formatted, and stored
in an array for matching against DI's encountered as
the ATOLL predictions are read. Counters for the num-
ber of test procedures remaining to be processed are
initialized.

The number of test procedures remaining to be processed
is checked. If all have been processed, the program
cleans up and exits. If test procedures remain to be proc- .
essed, process counters are updated and a correspond-
ing test procedure ID from the input list is placed in
the current name cell.

1. Records on the simulation output tape are checked
against the current name cell until the matching
ID word is located. When located, process controls
are set to signal that the simulation tape is in
position to start the test procedure comparison.

. , .,
\

. .

. .

. .I

6.

. .

(If not located, controls are set to signal unex-
pected end of simulation tape, and a dump and exit
is made).

Records on the ATOLL tape are then checked
against the current name cell until the matching
ID word is again located. When located, process
controls are set to signal that the ATOLL tape is
also in position to start the test procedure com-
parison. (If not located, an unexpected end of file
will be encountered, and the run wil l be discontinue@.

2.

Storage areas for encountered simulation data are
initialized, and a simulation case history is read off the
simulation tape.

1. The simulation case comprises all data from the
first %tep" record encountered until a new (next)

record (or an "endf1 record) is read. The
actual step and substep numbers contained on these
"step" records become the unique case starting
and case ending correlation words for locating the
equivalent data records on the ATOLL tape. The '
case ending "stepf1 record is held in standby, and
will become the starting %teptl for the next case.

2. The records following the first %tep" record are
checked for specified simulation activity labels,
and in turn for discrete data. Any discrete inputs
encountered are then checked and processed as
follows :

a.

* .

.. .

b.

If the DI has not been encountered previously
during the current case, the DI value and the
numerical designation are combined and stored
as a unique word in a simulation DI array NSDI.

If a DI has been encountered previously during .
the current case, it is stored in a recurring DI
array NYCLE. If the DI value has changed, the
new value is substituted for the previous value
in the appropriate position in the simulation
DI array NSDI.

4-5

.

I . .
. .

I .

. c. If a DO is encountered on a record with the *

DNS "extra" label, the DO designation is
stored in a "redundant input" array, NSDO.

d. When the next ttsteptt record (or "end" record)
is encountered, the current case is concluded, . ,

and controls are transferred for locating and
processing the equivalent data on the ATOLL
tape.

I). Storage areas for encountered ATOLL data are initial-
ized and the ATOLL record containiqg d,
started correlation word (refer to C. 1) is located. The
case starting record and all subsequent records are check-
ed for specified ATOLL operators, for step and substep
numbers, and any discrete prediction data is processed
until a record containing the case ending correlation word
is encountered. The case ending record is held in stand-
by and in turn becomes the starting record for the next
case. The test and DI prediction data encountered are
processed as follows:

1. If a pre-'specified list of DI's to be ignored was
included at run time, each DI encountered during
the case is checked against this list. If found in
the list, the DI is merely stored in a "Don% Care"
array LOST for subsequent comments listing. If
not found in the list, the DI is processed exactly
as in C. 2. a and C. 2. b, except that the processed
data is stored in ATOLL counterparts KADI and
KYCLE of the Simulation arrays.

.

2. Test operators encountered are checked for branch-
ing data. Any steps and substeps specified as branch
points are processed and printed as they occur, pro-
ceeded by a case heading identified to the starting
step and substep.

3. When the case ending correlation word is encounter-
ed, the current case is concluded, and controls are
transferred for comparing the ATOLL data with the
Simulation data compiled from the current case.

4-6

E.
. . . .

The Simulation data and ATOLL data compiled from
the current case are compared. If no differences are
encountered, controls are transferred to F. If differ-
ences o r discrepancies were encountered, and a case
heading has not been processed (ref. D. 2), a case
heading identified to the starting step and substep is
printed. Comparison of the Simulation data and ATOLL
data proceeds as follows:

1. If any Do's were placed in the llredundant inputtt
array, they are listed out under an explanatory
heading.

Error flags and difference counters are initial-
ized, and any combination "DI and valuet1 words
in the Simulation DI array NSDI are compared
with any combination "DI and value" words in the
ATOLL DI array KADI. All matching words are
zeroed.. Any remaining words in the Simulation
DI array will have been different either in name,
in value, o r both, and are therefore formatted and '

printed out in conjunction with an explanatory head-
ing. Similarly, any remaining words in the ATOLL
DI array are printed out under an equivalent head-

2.

. .

ing.

, 3.

3 4.

Error flags and different counters are re-initialized,
and any recurring Simulation DPs are compared to
any recurring ATOLL DE'S. Any Simulation differ-
ences o r ATOLL differences are printed out under
explanatory headings.

If any DI's were placed in the Won't Care" array
LOST during the case, (ref. D. 1) , these DI's are
printed out under an explanatory comment.

F. After completion of the current case comparison, the
status of the processing is checked.

1. If the lfendlt (end of current test procedure) records
have not occurred, control is transferred back to
C. for reading in a new case.

. .

. .

. .
. . .

INPUT FORMATS:

e

. .

. .

. . , * . . .

. .

2. If the tlendll records have occurred, and the simu-
lation cycles list is to be ignored, control is trans-
ferred back to B.

If the list is to be checked, the program proceeds
to locate the DNS ll*Listll label. All records are
checked for names and values contained in their '
cycle count. Any names encountered which were
not activated o r cycled during the test are listed
out. When the end label of the list is encountered,
control is returned to B. .

3.

Figs. 4-1 and4-2illustrate the typical content and format of
the two types of data to be compared by this program. The
formats for the two control cards required in the input deck
are discussed in the section headed TJse".

.

Fig. 4-1 shows representative portions of the results of a .
test procedure simulation. The portions shown are typical
of the content and format of the simulation output tape. The
lines identified on the left with an asterisk were the result
of a simulation control card. The lines identified on the
left by the activity label Ynputl* were the result of an input
equation. (These are reflections of the driving functions
derived from the tape of Fig. 4:~ by the Input Conversion
and Punch Program prior to the simulation). The remain-
ing lines above-the ttLIST1l label acre typical of the history
of reactions occurring in the model as a result of these
inputs. Activity labels ('input' and 'entry') preceded and
followed by an asterisk label constitute a 'case'. The case
is identified by the step number on the asterisk label im-
mediately preceding the activity label. The step number is
used to correlate the simulation data with the equivalent
ATOLL data. The lines below the ''*LIST1' label represent
portions of the state list which records the final value for
each variable, and how many times it changed state during
the test procedure. The numbers at the left of these rec-
ords are the internal code numbers of the variables, and
are always listed in numerical order.

Fig. 4-2 contains representative portions of the ATOLL
card image tape. The portions shown typify the IBM ATOLL
format and data content. The program monitors all ATOLL
instructions shown except the "Delayt1 and tlScan't instruc-.
tions. Primary concern is with the 'DEI0 ' and 'DISIl'
records, which contain the names and values of the predic-
tions. The step and substep numbers which appear at the

4-8

1
I
f

1
i

I

!
I

1

I

i
I
I

f
i

I

IA
U

c; >
G

0

C

C

C

C

a
#-

c

n

I

c
"
-

C
C
0
c
CI

I-
<

c-
U
c -
i&

ZI

'C

L

C

i

I

i
!
i

I

I

i

i

1

I

I

1

!

-4r

.
d-4.

IJ

4 r

Z l C
- I .

- 4 c

' 6 6
.I4 u
d
cd

.d Ei
rn
9)
k

9)

k a

43
8
u rn
9) u
w
0
m u
t;l. a

I .

rr
0
4
c
D

e

w

1

-
n
J'
- .
0
2
UJ ;

I

* ;

4-9

. ..

s
a
r
(r

f - -
e

c
C

C

pl
C

c -
d

r

5
U
c.

C
C
C
C

(r

c

C c
0
0
r
E -
<

c
t
c
c
t
C

Q) a
cd
c,

(="
cd n

. .

\
start of each record are the basis for correlating this data.
with the simulation data. The step number occupies the
first 4 characters in the record and is right adjusted. (The
particular step numbers shown here are preceded by a
blank. The next 2 characters'constitute the substep number.
The step number is not repeated, but is implied for SUC-
ceeding substep numbers until a new step number is
encounteredj .
Fig. 4-3 represents the prologue printout from a compari-
son run. The bottom pair of lines are images of the two
control cards required for the input deck. These cards
were discussed in the section headed 'TJSE". The preced-
ing heading and test procedure list were printed by the pro-
gram from the data in the first control card image. The
second control card image signifies that 3 discretes,
DI0225, DI0226, and DI0233 are to be excluded from any
comparison.

OUTPUT FORMAT: '

.
Fig. 4-4 represents some typical discrepancy listings
prepared by the program after conducting a comparison.

1.

2.

The message listed under step 170 indicates that
simulation result DI267 was not found on any of
the ATOLL tlDISUtt records encountered during
the case. (If DE267 had been located as a rrDISIl'l
prediction, no step heading or message would
have been processed. If DEI67 had been found on
a "DISIO" prediction, the heading "ATOLL Dis-
crete Not in Simulation" and statement "DIO267 =O",
would also have been included for this case). .

The note listed for the case which started at step
0190 signifies that when DO121 had been processed
as an input during the simulation run, its value
was already at the state requested. This indicates
t&t ~ 1 . 2 1 may he an unnecessary or redundant
step in the test procedure.

1 _ .

3. The message listed under step 0280 substep 00
indicates that DJ.240, which was encountered on a
I'DISI 1" record (reference Fig. 4-2, DIN0240),

here is handled as in 1. above.
was not found as a simulation result. The analysis :

4-11 . .

. . ,
. .

>

- - .. ~-.-..----- , - - * - . * _ . \ . _ * * - - - *I- -----.---
- - t .

4

!
iely T E S T P F E C F D U J R E NUPBERS . -

' I C P S O S O i
f

i . .
I C P 5 C l ' L i

1

,
' ICP5CL2 !

0 1 1 5 0 A l C C 3 C 4 5 C l G O P 5 C 3 C O A 5 ~ 1 1 C A 5 0 1 2 i

30225C2266233
i

I

. . . .
, .

4.
. Figure 4-3 Prologue printout for 'comparator program.

4-12 *

--__-
M T E - CISCKETE TALR REA CY A T THE S T A T E R E Q U E S T E D .

t C P C l _ Z L
,

-4 -_-_ l_l_

SlEP 0280 SUESTEF OC

A T E L L C I S C R F T E IN h E T I h S 1 P U L A T I ; I N
1

i

- - -- - -.---_I - - C I C 2 4 0 . - 1.
, . I

S T E P C280 S U S S T E P 5 0

h E T E - TEST A T S T E P 0 2 8 5 S L B S T E P OC C A R BRANCH T E C 2 1 C C C

h B T E - b T g L L C I S C R E T E IS h e T I & CNS MeCEL !

LIT226
I

I

C I C 2 2 5
I

!

I

S l E P 031c. SUBSTEF C.0
1

h G T E - C R S C I S C H E T E I h P F P E A R S HERE THAR B i J C E .
CTClZL .

CIC123
I CIC122 .

Figure 4-4.. Discrepancy listing for comparator program.

4- 13

,
4. The first note listed under step 0280 substep 50 '

indicates that an ATOLL I1Testt1 Record' shown on
Fig. 4-2 w a s encountered. The second note sigd-
fies that DI0226 and DI0227 had been found in the
data of Fig. 4-2, but had been included as ATOLL
data to be ignored (reference Fig. 4-1). _ .

5. The note listed under step 0310 signifies that three
discretes cycled during the simulation before
attaining final values which corroborated the ATOLL

. . predictions. If corroboration had not occurred, ad-
ditional messages would be included as in 1. above.

Fig. 4-5 represents a portion of the complete list
of modelled variables or items which were not used '

in the test procedure. The list is obtained by lift-

Fig. 4-1) all variables whose cycle count was zero

6.

1 ing out of the Simulation state list (reference

at the epd of the test.
I

I

. . 9 . - i
. . .

' .. .
. .

. . .

.
.. .

. .
, .

. .. . _

, --
TI-E t = a L L e k I w I T ~ E ~ G E ?:ET CYCLED D U R I N G T H I S T E S T PRBCEWRE

1.7 EV C Y C L E S

o s .
O e

CI 11
CI 14
CI16 ' 0 0

t 'C122 O e

GI23 0 0
C 1 2 4 o *
C I 2 5 0 0
Cfi6 C e
CI27 O m . -.

0 0 c

C e
O e

. i D I 5 C O e

!
C I 4 6
CI47

i . ' 0149 .

.
@ e C I S 6

0 1 6 1 0 0 ..

2L59A O e

3L58A C e
I 1 L 5 9 B O e

2 i s a b o s
3L52P O e

1L5tC .O e

I

2L58C O e

3 L 5 8 C 0 0 1

1LtC95 e a i
2LkC95 O e

3LEC95 o s
4LtC95. O e I
5LtC95 ' 0-2
6LtC95 0 0
7icc95 O e

8 L C C 9 5 O e

I____.-. - 9LkG35 - _ _ - _ _ - -o-.* I. . - - - _ - -
4 .

Figure 4-5. Unused component list from comparator program.

4-15

- - APPENDIX A

PROGRAM F I B W CHARTS

4-17
I

I .

. .

GO FIND IDA
NUMBER ON
DNS TAPE

Figure A-1. SUBROUTINE CONTRD (1 of 2)

0 4-19

. .
Figure A-1. SUBROUTINE CONTRD (2 of 2)

. 4-20

' . .

Figure A-2.

!

SUBROUTINE CONVRT (1 of 1)

4-2 1

0

Figure A-3. SUBROUTINE DNSIN (l of 3)

4-22

, ,’

I

Figure A-3. SUBROUTINE DNSIN (2 of 3) B

4-23

CONTRD
RETURN

!

Figure A-3. SUBROUTINE DNSIN (3 of 3)
0

4-24
. .

B E G I N 0

_ . I

I .. .

. .

.
, .

. .
. . . .

. .

. . 1

Figure A-4. SUBROUTINE DNSRDG (1 of 2)

4-25

. . t ' . , ; : . . . ' . . . ' ,
. . .

. .
. .

J . *

RECOMBINE
NEH VALUE

NAME IN
ARRAY NSDl

i

Figure A-4. SUBROUTINE DNSRDG (2 of 2)

4-26 *

INCREMENT
* COUNT AND

STORE NAME
ONLY I N

ARRAY NYCLE I

. .

ENTRY

1

"NDOF"

I

SET CASE

"NOOF" ON

. .

. _

. .

. .

. .

' I

Figure A-5. SUBROUTINE DOSRDG (l of 1)

4-27

. .
.' .

.
. . .

. I .
. - '

Figure A-6. SUBROUTINE KATOL (2 of 5)

4-29

4

Figure A-6. SUBROUTINE KATOL (3 of 5)

4-30

I

PREDICT 108
FLAG (KEHF)

I I

I

Figure A-6. SUBROUTINE KA,TOL (4 of 5)

4-3 1

..

~3

1

1
I

!

I

Figure A-6. SUBROUTINE KATOL (5 of 5)

4-32

. .
' . . .

. . (9. . .
. . 6 CASE FLAG

. .
c 1

I N I T I A L I Z E
FOR CASE
AND SET

CASE FLAG ON

I N I T I AL I Z E
SEARCH REG.

AND SET
SEARCH KEY

. .

.' .

I

I

Figure A-7. SUBROUTINE KATRDG (1 of 5)

4-33

,
. .

1

Figure A-7. SUBROUTINE KATRDG (3 of 5)

4-35

. .

Figure A-7. SUBROUTINE KATRDG (4 of 5)

4-36

\

,

,

. Figure A-7. SUBROUTINE KATRDG (5 of 5)

4-37

1

. . I
CURRENT

ATOLL HORD

,

i
V

mLu
GO PRIM

ATOLL
MESSAGE

'8
"I Figure A-9. SUBROUTINE CHEKZ (1 of 3)

4-41

I

Figure A-10. SUBROUTINE COMPAZ (1 Of 1)

443

I

i

(-)

.. .

. * . . .
. . . .

' . . .

. .

. -

. .
. .

I

Figure A-11. SUBROUTINE NIDEX (1 of 1)

4-44

1 .'

Figure A-12. SUBROUTINE PREPAZ (1 of 1)

4-45

. _ . . .
. .

I

Figure A-13. SUBROUTINE PRINZ (1 of 4) ,

4-46
I

Figure A-13. SUBROUTINE PRINZ (2 of 4)

4-47

I

I

4-48

. .

3

J NCR M E N 1
LJNE COUNT L

c

9 . LESS THAN

. .

Figure A-13. SUBROUTINE PRINZ (4 of 4)
. .

4-49

i :

i

I

HRITE

. . .

. i3

I '

. .

* .

Figure A-14. SUBROUTINE READCD (1 of 1)
. . 0

4-50

The following is an alphabetical listing of the terms used in the DNS/ATOLL Cornpator
Program.

. NAME ' DESCRIPTION

. IBMF ATOLL Format Flag
t IDA Test Procedure ID Number

IND Internal Directory Key
. . INUM Transfer Argument

WAG Page Counter
ISPEC Common Heading (JOPT, KYPE,

ISSTP Current ATOLL Substep
ISTEP Current ATOLL Step
JOPT (Unused)

F

LIST, MNT, IDA)

4,-51

I
1

.-

NAME

KHOLD

KLIM '

KNAM

f(NTRL

i(INF -

* KNT

. . KNUF
KNUM
KONF
KOVER
KRDF
KSTF
KTIM
KTRL
KYC
KYCLE
KYCLES
KYPE
LBKF
LBLF
LBRA

' 'LCT
LETF
LIST
WST
LPRV
LRET
LSDV
ISTEP
LSSTP
MCAS

MNT
MOUT
MSSTP
NAM
NAMS

*

NBU)CK
NBRA .

" . NCAS
NCT .

4-52

DESCRIPTION
. .

Step Correlation Flag
AT0 LL ltDISOfl Operator Flag
ATOLL DI Storage Limit Flag
AT0 LL WAMEqt Operator
IDA'S yet to be Processed Counter
Common Block (KTRL, IBMF,
NSFG, KAFG, LSFG)
ATOLL *ID1 in Process" Flag
Current DI Name
ATOLL Continuation Flag
ATOLL "DI Overlook" Flag
ATOLL 'Vase in Progress" Flag
ATOLL ''Step Locatedf1 Flag
Step Discrepancy Counter
Processing Control Key
AT0 LL "Recurring D P Counter
ATOLL llRecurring DI" Name
Common Block (KYC, KYCLE)
IBM/Boeing Format Key
Previous Block Number
ATOLL Block Flag
BRANCH Transfer Argument
Line Counter
ATOLL Letter Flag
DNS State List Flag
DI to be ignored
Common Heading (ISDV)
Internal Return Key
DI BCD Value
Case Starting Step Number
Case Starting Substep Number
Common Heading (NCAS, KCAS,
KERC, NTES)
Number of IDA'S
Number of DI's to be ignored
Branching Substep Number
Current Test Procedure
Common Heading (NID, NAM, MBIDC,

Current Block Number
Current Branching Step/Substep
Simulation Case Counter
List Processing Line Counter

NXTB, LBLF, NSUBT) . -

NAME ' DESCRIPTION .

NDIF Sirnulation DI Value Flag
NDIS * . Simulation DI Counter
NDOF Redundant Input Flag
NDOS Redundant Input Counter
NENFG Simulation Enter Flag

.

. NEXT Next Case Step/Substep Number
' ' NGOOD
' NID Current Test Procedure ID .

NINFG Simulation Input Flag -
NLIM- Simulation DI Storage Limit Flag
NNFG . . . Simulation Name in Process Flag

Current Simulation Name
DI's to be ignored Counter

NNUM
NOD

. NODIS Don't Care DI List
NOK. Simulation DI Discrepancy Counter
NOPRT Common Heading (NOD, LOST, KOVER)

NRDF Simulation Case in Progress Flag
NSDI Simulation DI and Value
NSDIS Common Heading (NDIS, NSDI, NLIM)
NSDO Redundant DO Name
NSDOS Common Heading (NDOS, NSDO) '

NSFG : Simulated IDA in Progress Flag-
NSTEP Current Case Step/Substep
NSTEPS Common Heading (NSTEP, NEXT, -

Common Heading (MOUT, NODE8

NPAG . List Processing Page Counter

LSTEP, LSSTP, KEPCK, WOLD)

Case Heading Flag
Simulation Tape Input Buffer
DNS /AT0 LL Discrepancy Flag

NRDF, NDOF)

NSTPF Step Label Flag . .

' NSUBT
NSWZXS
NTES
NUMS Common Heading (NNFG, NNUM,

NXTB Next Block Number
NXTF Next Case Ready Flag
NYC Simulation Recurring DI Counter
NYCLE Simulation Recurring DI Name

. NYCLES Common Heading (NYC, NYCW

2.0 DEFINITIONS

NAME, DESCRIPTION
. . .

. IBMF
. -

A word in common block/ISPEC/ used by the program
as a means of selecting alternate groups of instructions

. .
n

4-53

NAME

IIIA

I

IND

INUM

WAG

ISPEC

I

DESCRIPTION

for processing certain ATOLL format o r style
differences between Being and IBM test procedures,
The flag is set (by means of control card 1). to 1 if
the ATOLL tape to be used is an IBM tape. If not,
the flag is zeroed.

A 10 word array in common block/ISPEC/ used to
store the names of any (up to 10) test procedures
which are to be processed. The array is used in ’

conjunction with counter MNT. Each name (ID) is
stored in sequence as a 6 character BCD name
exactly as it appeared in the data field of control
card 1.

An internal keyword used in subroutine PRINZ to
direct the program to specific groups of instructions
Its value is determined from the calling routine.

An internal location used in subroutine DNSINP as
an argument when making a call.

An internal location in subroutine PRINZ used for
counting and numbering pages for the program
printout.

A common block of 14 words used to store the con-
tents of the first control card. The array contains
JOPT, KYPE, LIST, MNT, AND 10 IDA locations. .

ISSTP An internal word in subroutine KEPCKZ used to
store the latest test procedure substep number en-
countered when reading the ATOLL tape. The sub-
step is stored as 2 BCD characters right adjusted
and zero filled leading.

ISTEP

JOPT

. .

A word in common block/JSTPS/ used to store the
latest test procedure step number encountered when
reading the ATOLL tape. . The step number is
stored as a 4 character (right AIXJ nonblank BCQ
number left adjusted in the word and zero filled -

I

following.

Unused spare word in common .block/ISPEC/.

4-54

\ NAME

JSTPS ,

KADI

. . .

KADIS

I

.
*

KA.FG

KAWDis

KBOT

KCAS

. . . .

KATRL

DESCRIPTION

A common block containing ISTEP and MSSTP,
and accessible to PRINZ for printing information
concerning branching test instructions encounter-
ed on the ATOLL tape.

A 100 word array in common block/KADIS/ used
for storing the name and value of each discrete
prediction encountered when processing AT0 LL
"DISIO" o r "DISI 1" records during a case. The
value is stored as two BCD characters left ad-
justed in the word. The numerical DI designation '

is stored as a 4 BCD character number right
adjusted in the word. For printout, the value -
characters are replaced by the BCD designator
rlDItl. The array is zeroed at the start of each
case. -

r ,

A comion block Containing KDIS, 100 KADI
locations, and KLIM; It is used for storing
processed ATOLL prediction data during a case.

A word in common block/KNTRL/ used as a flag
to signal that a particular test procedure is in process
on the ATOLL tape. It is set when the particular
test procedure name (NID) has been loeated on the
ATOLL tape, and zeroed out when a subsequent
ATOLL ltENDtl record is encountered.

A common block containing 6 words o r flags used
for controlling the reading and processing of the
ATOLL tape. It contains KRDF, KONF, KENDF,
KDIF, KNUM, andKNUFI -

A common block containing 14 words used as the
input buffer for storing each 14 word ATOLL tape
record as it is being processed.

A test word in subroutine KATOL used for identi€ying
ATOLL tlBOTBtf records.

. .

A word in common block/MCAS/ used as a counter
for storing the current number of ATOLL cases
which have been processed. It is zeroed at the
start of each test procedure.. . 4

4-55

-

I . NAME DESCRIPTION

KDIF
- ..

A word in common block/KATRI/ used as a nag
to signal the value of the current' DI predictions
associated with an encountered ATOLL trDISIO1l or

"DISI 1" record. The flag is set minus for 1rDISIOt9
records, and is set plus for tlDISI 1" records.

A word in common block/KADIS/ used as a counter
for storing the number of ATOLL DI predictions
encountered during a case. It is zeroed at the start
of each case.

A test word in subroutine KATLT used for identify-
,ing AT0 LL llEND1l records.

~.

3. .
KDIS

. I .

KEND

KENDF

KENF

KEPCK

. . . .

- -
A word in common block/KATRL/ used as a bag
to signal that all names associated with a particu-
lar ATOLL "DISIO1' or llDISI 1" record have been
processed. It is set whenever an ATOLL !!End of ,

variable field" is encountered o r signaled,

A flag.in subroutine KATLT used to indicate that an
ATOLL llDISIO1l o r "DISI 1" record has been en-
countered. It is zeroed at the end of each case.

A word in common block/NSTEPS/ used as a
means of identifying specific ATOLL records
which are to be treated as the starting and ending
records for a case. The end word is updated in
subroutine KEPCKZ each time a new ATOLL step
or substep is encountered. It is formed by com-
bining the current o r latest step (ISTEP) and the
current substep (ISSTP) , with the step number
occupying the leftmost 4 BCD characters, and the
BCD substep number occupying the remaining 2

.

characters.

An internal counter in subroutine COMPAZ used a8
a counter and subscript for storing any ATOLL
predictions which were not found in the simulation
results for a case.

. . -
KER

NAME DESCRIPTION

KERC A word in common block/MCAS/ used as a counter
for storing the total number of discrepancies en-
countered during a complete DNS/ATOLL test
procedure comparison. (If no discrepancies occurred, -
a comment so stating wil l be printed out at the end
of that comparison.

A word in common block/NSTEPS/ used as a flag

than the number specified as a case ending record.
. has occurred. If a step/substep discrepancy occurs,

KHOLD '
. - - to signal that an ATOLL step/substep number higher .

KINF

KLIM

KNT

the flag is set to 1, and the current case iscon-
cluded, but the comparison is bypassed. If a match
between the ATOLL WEPCK" and SIMULATION
llNEXTfl occurs during the following case, the flag

is set to 2, and correlation is re-established. (If
no match is located after 10 attempts, the program
dumps and exits).

. An internal flag in subroutine KATLT. It is set to
1 if an ATOLL llDISO 0" or'DIS0 lfl record is en-
countered. It is zeroed at the start of each case,
and was included for future program capability
expansion.

A word in common block/KADIS/ used as a signal
flag should the specified storage limit of 100
ATOLL predictions for one case be exceeded. If
exceeded, each excess DI encountered is stored in

- . . ,
the flag.

A test word in subroutine KATLT used to identify
ATOLL "NAMEt1 records.

An internal counter and test word in driver program
CONTRD used to keep track of the number of test
procedures remaining to be processed. It is set
with the number from control card 1 (MNT), and
tested before each test procedure is started. (If
zero, the program exits. If not, KNT is decre-
mented and a test procedure is set up for comparison) e

4-57

NAMB

KNTRL .

KNUF

KNUM

. .
. .

. . KONF

KOVER

KRDF

KSTF

6 DESCRIPTION G . **

. .

A common block contaiqing 5 process . . control . flags -...,-. - .
(KTRL, IBMF, NSFG, KAFG, LSFG).

A word in common block/KATRL/ used as a flag
and temporary character storage cell during the
identzication of names encountered in the ATOLL'
variables field. It is set in KATRG when any of the
characters (0 thru 9) are detected, and zeroed
whenever any other character is encountered.

A word in common block/KATRL/ used as tempo-
rary storage while building up the numerical nams
designation for discrete predictions encountered
while processing the variables field of ATOLL
"DISIO1* o r "DISI 1" records. The word is for-
matted in BCD, and will contain a 4 character
numerical discrete designation right adjusted and
zero filied.

- - - - - - - _

, A word in common block/KATRL/ used as a fIag
to signal that the current ATOLL variables field
is to be continued on the next ATOLL .record. . It
is set in subroutine KATRG if a continuation
character is encountered, o r no field termination
characters are encountered. It is zeroed before .
each new variables field is processed.

, .

A word in common block/NOPRT/ which is set in
KATRG during initial entry to signal all subsequent
entries during the run that any required initiali-
zation of data pertaining to DI's to be ignored has
been completed.

A word in common block/KATRL/ which is set in
subroutine KATRG during the first entry in a case.
It signals any subsequent entries that initialization
of controls for DI predictions data has been corn-.
pleted. It is re-zeroed at the end of each case.

An internal word in subroutine KATLT used as a
flag to signal that the case starting step has been
located on the ATOLL tape and the case is ready
to process. When the correct starting step (NSTEP)

I

. .

4-58

KTIM

KTRr;

KYC

.
...

KYCLE

KYCLES

KYPE

LBKF
- - -

DESCRIPTION
. .

is located, the flag is set to 1. It is maintahed
at 1 each time the correct case ending step (NEXT)
is located. It is zeroed at the beginning of each -
new test procedure.

An internal word in subroutine KATLT used as a
counter to store the number of times a step corre-
lation discrepancy has occurred (KHOLD = 1).
(If the count exceeds 10, the program dumps and
exits).

A word in common block/KNTRu used as a proc-
essing status flag. Its value is returned to CONTRD
as 2 for all normal returns. If its value is 10, a
processing e r ror has been detected, and the pro-
gram is set to dump and exit.

*

A word in common block/KYCLES/ used as a counter
to store the number of ATOLL discretes which were
encountered more than once during any one case.
The counter does not increment above 10, and is
zeroed at the beginning of each case.

A 10 word array in common block/KYCLZS/ used
to store the names of any ATOLL discretes which
were encountered more than once during a case.
If more than 10 recurring names are encountered,
the last name encountered will be placed in the 10th
word. The array is zeroed at the start of each case.

A common block containing a counter KYC and 10 /
KYCLE locations used for storing any recurring
ATOLL DI predictions which are encountered dur-
ing a case.

A word in common bTock/ISPEC/ used to signal the
value to be assigned to ATOLL format flag IBMF.
The value assigned to KYPE is taken from control
card 1.

An internal word in subroutine KATLT used with
Boeing ATOLL tape to signal that the ATOLL b€ock
record corresponding to simulation block ''NBIOC"
has occurred. It is ze&ed at the start of each test
procedure, 4

4-59 .

DESCRIPTION NAME

LBLF A word in common block/NAMS/ used as a flag
in subroutine P m Z to signal whether the current
test block heading has been printed out when an
ATOLL tape using the Boeing format is being used.

A word in subroutine KATLT used as an argument :
when calling subroutine PRINZ with information . ’

concerning branching ATOLL test instructions.
’

A word in Subroutine PRINZ used as a line counter
for controlling the paging and printing of discrepancy
lists. It is zeroed whenever 54 lines have been
printed.

mRA

..
LCT

. .
W T F A word in subroutine KATRG used to store and

signal when any character other than a number or a
control *character has been encountered while proc-
essing the variables field of an ATOLL record. It
is zeroed whenever a number or a control character
is encountered.

i LIST A word in common bloek/KNTRI,/ used to signal
CONTRD and DNSINP that the simulation state and
cycle list contained on the simulation tape is to be
processed at the end of the QL rrent test procedure
comparison. Its value is set to 1 at run time from
control card 1 if the state list is to be processed. I€
not, it is set to 0. Its value holds for the entire run.

. . * .

. IQST A 40 word array in common block/NOPRT/ used to
store any ATOLL predictions encountered which
were included at run time in a pre-specified list of
DI’s to be ignored. The array and its associated
counter, NOD, are zeroed at the beginning of each case.

LPRV

. ..

A common block containing 100 I.SDV locations used
for storing the BCD value data associated with ATOLL
or simulation discretes when printing discrepancy
lists. .

.

4-60

NAME DESCRIPTION
. .

LRET

ISDV

lSSTP

ISTEP

An internal word in subroutine PRINZ which is set
to selected values if line counter LCT exceeds 54
when tested at various processing points. The. set-
ting provides a means for controlling a transfer to
the paging and title section and a return to the proc-
essing point.

'An array of 100 words in common block/LPRV/
which is used for storing the BCD value data
associated with ATOLL o r simulation discretes
when printing discrepancy lists. The BCD words
may contain blanks, o r the statement ff=l. l1 * or
the statement tl=O.lt.

A word in common block/NSTEPS/ used to store the
case starting substep formatted in BCD for print-
out if a'ease heading is required. It is processed in
subroutine CONVRT from the current contents of
NSTEP.

A word in common block/NSTEPS/ used to store
the case starting step formatted in BCD for print-
out when a case heading is required. It is proc-
essed in subroutine CONVRT from the current con- .
tents of NSTEP.

' MCAS A common block containing 4 storage locations for
case data. (NCAS, KCAS, KERC, NTES).

* MNT A word in common block ISPEG/ used for storing the
number of test procedures which are to be processed
during the run. Its value is set in subroutine READCD
when control card 1 is read.

MOUT

MSSTP

.. .

. . .
. .

A word in common block/NGOOD/ used for storing
the number of DI's which are to be ignored during the
run. Its value is set in READCD when control card 2
is read, and can be from 0 to 200.

A word in common block/JSTPS/ used for storing the
current substep number formatted in BCD for print-
out if information concerning branching ATOLL in-
structions is required. Its value is set in subroutine
Kl3PCKZ from the current contents of KAWDS.

4-61

. . . .

. .

. .

process ATOLL test records for branch data, and
as an argument when calling subroutine PRINZ,

NAME DESCRIPTION
. . .

NAM A word in common block/NAMS/ used for storing
the name of the current test procedure, It is set
in subroutine DNSINP, and is formatted in BCD
for use when printing out the title heading.

N B m C

A common block containing 6 storage locations for
test procedure identification and status data. (NID,
NAM, NBIQC, NXTB, LBLF, NSUBT)

A word in common block/NAMS/ used for storing the
starting test block number. Its value is set in sub-
routine DNSINP with data from the simulation
llBLOCK1l record, and is formatted in BCD for use
when printing out block headings in subroutine
PRINZ.

line is processed.

NDIF An internal word in subroutine DNSRDG used as a
flag to signal the value of a simulation discrete
encountered on the current record. The flag is set
negative if the current DI value is 0.

A word in common block/NSDIS/ used as a counter
for storing the number of simulation DI's en-
countered during a case. It is zeroed at the start

NDIS

. . of each case.
. .

4-62

NAME

NDOF
. - .

DESCRIPTION

A word in common block/NUMS/ which is set in
subroutine DOSRDG during the first entry in a
case to signal any subsequent entries that initiali-
zation of controls for redundant input Qta has been

I completed. It is rezeroed at the end of each case.

NDOS

NEXT

. .
NGOOD

NID

. .

A word in common block/NSDOS/ used as a counter
for storing the number of Do's. during a case which
were encountered on simulation records labelled
ttextrall. It is zeroed at the start of each case,

An internal flag in subroutine DNSINP used to sig-
nal that a simulation record labelled "ENTER" has
been encountered. It is zeroed at the end of each
case.

A word in common block/NSTEPS/ used as the
basic control word for correlating the starting and
ending of the SIMULATION and ATOLL cases. Its
value is set in subroutine DNSINP from data in
word 5 of the first SIMULATION Y3TEP" record
encountered after a case has been started. The
contents of NEXT are then used by subroutine
KATLT to compare with KEPCK in order to locate
the equivalent case ending record on the ATOLL
tape. The contents of NEXT represent the end of
the current case, and the starting point for the
next case. When comparison of the current case is
completed, the contents of NEXT are used to up-
date NSTEP for starting the new case. NEXT is
formatted in BCD and contains a 4 character step
number left ADJ and a 2 character substep number
right adjusted.

- .

A common block containing a count MOUT and a 200
word array NODIS. It is used i f a list of DI's to be
excluded from comparison is submitted with the run.
Data is obtained from control card 2 (and continu-
ations if required).

A word in common block/NAMS/ used to store the
identification word for .the current test procedure in
process. Data for the word is obtained from the
current position in array IDA, and is formatted in BCD.

4-63

NAME

NINFG

NLIM

NNFG

.- . .

NNUM

1 .

NOD

NODIS

. .
. . . . ,

DESCRIPTION

An internal flag in subroutine DNSINP used for
signalling that a SIMULATION record labelled
W?PUT1' o r ltEXTRAfl has occurred. It is zeroed
at the end of each case,

. . I

A word in common block/NSDIS/ used as a signal
flag if the specified storage limit for 100 DPs in
a case is exceeded. If exceeded, each exce88 BI
encountered.is stored in the flag.

A word in common block/NUMS/ used as a flag
and temporary character storage cell during the
processing of discrete names on SIMULATION
records. It is set in DNSRDG o r DOSRDG when
a BCD character 9 o r less is detected, and
zeroed when any character 10 or greater is
detected.

A word in common block/NUMS/ used as temporary
storage while building up the numerical name
designations for discretes encountered on SIMU-
IATION records. It is used in DNSRDG for proc-
essing DI's, and in DOSRDG for processing re-
dundant Do's. The word is formatted in BCD,
and will contain a 4 character numerical discrete
designation right adjusted and zero filled.

A word in common block/NOPRT/ used as a counter
for storing the number of discretes encountered .
which at run time were included in a prespecified
list of DPs to be ignored. The word is zeroed at
the start of a case, and is used in conjunction with
array LOST,

A 200 word array in common BIDCK/NGOOD/ used
in conjunction with MOUT for storing the numerical
designations of any discretes which are to be ex-
cluded from comparison. The data is processed in
subroutine READCD from data on control card 2
(and continuations if required). Each word used in
the array will be formatted in BCD and w,jU contain
a 4 character numerical discrete designation right
adjusted and zero filled. The array is unchanged
during a run.

4-64

NAME ' DESCRIPTION
.-

NOK An internal word in subroutine COMPAZ used as a
counter for storing the number of simulation dis-
cretes which were not corroborated by ATOLL
predictions. It is used to reset the counts in NDIS
or NYC after comparison is completed.

_ .

, .
- .NOPRT. , A common block of 42 words reserved for counting

and storing any ATOLL predictions which were in-
cluded.at run time in a prespecified list of DI's to
be ignored. It contains counter NOD, a 40 word .

. .

.

NPAG

NRDF

d .

NSDI

NSDIS

. .

array LQST, and an entry flag KOVER.

A word in subroutine DNSINP used as a page counter
for use when a simulation state list is processed for
printout.

A wordPn common block/NUMS/ which is set in
subroutine DNSRDG during the first entry in a
case. It signals subsequent entries that initiali-
zation of controls for storage of simulation DI data
has been completed. It is rezeroed at the end of
each case.

A 100 word array in common block/NSDIS/ used for.
storing the name and value of each DI encountered '

when processing simulation llENTERfl records dur-
ing a case. Each DI is assigned a word in sequence.
The DI value is stored as 2 BCD characters left
adjusted in the word. The numerical DI designation
is stored as 4 BCD characters right adjusted in the
word. For printout, the value characters are re-
placed by the designator "DI". The array is zeroed at
the start of each case.

A common block containing NDIS, 100 NSDI loca-
tions, and NLIM. It is reserved for storing proc-
essed SIMULATION discrete data during a case. It
is the SIMULATION counterpart of the ATOLL
KADIS block.

- -

,

,

* .

,

NAlVE

N S a 3

-

. . .

NSDOS

'NSFG '

* .

NSTEP

I .

NSTEPS

NSTPF

. .

. .

, I

DESCRIPTION
f

A 20 word array in common block/NSDOS/ which
is reserved for storing the numerical designations
of DO'S encountered on SIMULATION llEXTRAf'
records during a case.' It is used in conjunction
with counter NDOS, and is zeroed at the start of
each case. a

A common block containing counter NDOS and 20
word array NSDO. It is reserved for counting and
storing discrete output data encountered on simu-
lation records labelled "extraf1 during a case.

A word in common block/KNTRI/ used as a flag
to signal that a particular test procedure is in
process on the simulation tape. It is set when the
particular test procedure name (NID) has been
located on the simulation tape, and is zeroed out
when a subsequent record labelled is en-
countered.

A word in common block/NSTEPS/ used as the
initial case starting correlation word when proc-
essing a test procedure. Its initial value is ob-
tained from the first STMULATION "STEPff record
encountered and is subsequently used in subroutine
KATLT to locate the equivalent initial case starting
record on the ATOLL tape. The value is updated
with the current contents of location NEXT when
each subsequent SIMULATION case is started.
The word is formatted in BCD and contains a 4
character step number left adjusted and a 2
character substep number right adjusted.

A 6 word common block containing NSTEP, NEXT,.
LSTEP, LbSSTP, KEPCK, KHOLD. It is
used for storing test procedure step and substep
data, and for correlating the processing of a case
from the SIMULATION tape and from the ATOLL
tape. .

An internal flag in subroutine DNSINP used to signal
that the initial case is started. It is set when the
first SIMUMTiON "STEP" record is encountered at
the start of the test procedure. It is 'z,eroed at the
start of each test procedure.

.

4-66

NAME DESCRIPTION

NSUBT
. *

A word in common block/NAMS/ which is used as
a flag to signal if a subtitle for the current case is
required. It is set to zero at the start of a case.
The flag is set to 1 in subroutine PRINZ during the
first entry in a case. It signals subsequent entries
in the case that the case heading has been printed.

A common block of 20 words used as the input
buffer for storing each 20 word SIMULATION tape
record as it is being processed,

A word in common block/MCAS/ used as a flag to
signal if a discrepancy has been detected. It is set
with the value 1 in subroutine COMPAZ if it dis-
crepancy is uncovered. The flag is then tested in
subroutine CHEKZ to determine if a discrepancy
listing wil l be required. It is rezeroed after each
discrepancy list is processed.

NSWIXS

._ .
NTES

. .

NUMS

NXTB

A common block of 4 words used for temporary
storage while processing discrete names encounter-
ed in SIMULATION records. It consists of NNFG,
NNUM, NRDF, andNDOF.

A word in common block/NAMS/ used as temporary
storage for ATOLL block number data when proc-
essing SIMULATION l'BLOCK1* records for Boeing
test procedures. The word is formatted in BCD.

NXTF An internal word in subroutine KATLT used as a
flag to signal a case entry that the ATOLL case
starting record was already read in and stored in
KAWDG at the end of the preceding case.

-

.
. .

NYC A word in common block/NYCLF,S/ used as a
counter to store the number of SIMULATION dis-
cretes which were encountered more than once dur-
ing a case. The counter does not increment above
10, and is zeroed at the start of each case.

, . ..

. . , . . I

I

. .

. . . .
. . 4-67

. .
. .

I

zi
i NAME DESCRIPTION

NYCLE

NYCLES

A 10 word array in common block/NYCLES/ used
to store the names of any SIMULATION discrete8
which were encountered more than once during a
case. E more than 10 recurring names are en-
countered, the last name encountered will be placed
in the 10th word. Each word stored is in BC.D
format. The ar ray is zeroed at the start of each
case.

A common block containing a counter NYC and a
10 word array NYCLE. It is used for counting and
storing any simulation DI's which appear more than
once during a case.

. . .

. . . _

.' .

. .
- . .

.

4-68

1

CONVAlR DIVISION OF GENERAL DYNAMICS CORPORATION

. *
,

. .
DNS TRANSLATOR PROGRAM

. .
AUTHOR: A. R. Stone

Convair division of General Dyaamics
. .

PURPOSE:

RE STRICTfO NS :

The DNS Translator Program substitutes expanded
definitions or actual hardware nomenclature for the
coded variable names contained on the output tape from
a previous test procedure simulation. It produces a
translated printout and, if desired, a translated copy
of the output tape,

1. The programs must run on an IBM 7094 with UaTOB
systems capability.

2. In addition to system input and output, three magnetic
tape units are required. (Two for BCD input use, and
one for BCD output use).

. .
3. The maximum number of dictionary names which can

be supplied is 4000. The maximum size for any name
definition is 24 BCD characters.

STORAGE : The program and its associated buffer storage area extends
consecutively from core location 3064) to 67722) The
program consists of the following three subprograms:

1. DNSINP Driver, and simulation tape reading

8 8'

and writing routine (Fortran IV).

2. DNSRDG Locates simulation names in dictionary.
list (MAP).

3. READC Reads and stores a dictionary of names
vs definitions (Fortran N).

TIMING: ' The program processes approximately 1000 to 2000 records
per minute depending on control options specified.

. .

. .

5-1

USE : 1. A simulation output tape, a control card, and an input
dictionary containing names versus desired definitiorw
are required to set up the program for operation. The
simulation output tape, previously created during a
simulation run, contains a history of actions and reactions,
and state lists, resulting from stimulating the DNS model
with inputs derived from an appropriate test procedure.
The code names which appear in the simulation output are
essentially 'nicknames' used in place of the full names
of system hardware (locatable on the schematics) when
the DNS Model was constructed. These code names are
limited to one IBM word for simplicity and conservation
of computer memory. In order to make the results more
meaningful to users interested in a greater level of
detail than comparison of DO/DI relationships, the DNS
Translator Program permits reverting from the 'nicknames'
back to fully locatable hardware names of up to twenty-four
characters.

'

2. A typical operational card deck setup is: .

1

. .

$JOB
$PAUSE
$ATTACH A5 (Output save tape)
$As SYSCKl, HI
$ATTACH B6 (simulation results)
$As SYSUTG, HI
$ATTACH
$As SYSUT7, HI
$EXECUTE IBJOB
$IBJOB

I

A7 (dictionary tape, if used)

Go

(DNS Translator Bh&y Program Deck)

$DATA
*NAMES

(Dictionary Card Deck)

*END NAMES
7/8 (EOF)

. . . .

. . 5-2

3. Control card u&ge is as follows:

*INPUT This card is only used if the dictionary
* card images have previously been stored
on a special input tape. E used, it will
be the only data card, and will be fol-
lowed immediately by the 7/8 end of file
card. The control label, *INPUT is in
card columns 1 thru 6. The asterisk
must be in column 1.

This card signals the start of the isput
dictionary, and must be present.

*NAMES

The card format is:

Col 1 thru 6 *NAMES
C o l 7 thru 12 BLANK
Col13 thru 1 8 May be blank, o r may contain LIST 0 or

HISTOR. LIST 0 is used if only the state
lists are to be translated. HISTOR is used
if only the simulation history is to be trans-
lated. If blank, both the history and lists

C o l l 9 thru 24 May contain anything

columns 25 and 26 contain "Blft, a flag is
set to signal that the tape being translated

, will be processed.

. Col25 thru 30 May be blank, o r may contain "BII1. If

. . is a standard system print which already con-
tains titles and page numbers. If blank, the
normal simulation output tape will be trans-
lated, and titling and paging control will be
used for the printout.

Col31 thru 80 Blank

The input dictionary cards immediately follow the *NAMES
card, and contain one variable per card in the following
format:

Col 1 to 6 The code name for the variable.
Col7 to 12 Blank
Col13 thru 36 As many columns as required to fully des-

cribe the variable.
Col37 thru 80 Blank

5-3

i

METHOD:

*END NAMES This card signals the end of the in-
put dictionary, and must immediate-
ly follow the 1 ast dictionary card.
The control label *END N must be in

. columns 1 thru 6.

1. The program first reads the cards following the *DATA
card. If the first card contains the control label *INPUT,
the program initializes an input tape lnit and sets a flag
to enable reading the dictionary cards (surrounded by
the *NAMES/*END NAMES cards) from the special in-
put tape, and proceeds to 2. If the first card does not
contain the *INPUT label, the program proceeds to 3
and continues processing cards from the standard load
tape.

:. . . - ,

. .

2. A card image is read in.

3. If the names 'in progress flag has already been set, the
program goes immediately to 4 to process a dictionary
card. If the flag is not set, the program checks for the
*NAMES label. If the *NAMES label is absent, the pro-
gram returns to 2 for the next card. When the *NAMES
label is encountered, words 3 and 5 are checked for pro-
cessing labels, and appropriate control flags are set to
perform the specified processing of the simulation his-
tories, simulation state lists, and output save tape. The
'names in progress' flag is set , and the program returns
to 2 to begin processing the input dictionary.

-

4. If the *END NAMES label is encountered, the 'names in
progress' flag is reset to a final value (2), and the pro-
gram proceeds to 5 to process the simulation results. E
the *END NAMES label is not present, a name counter is
incremented, and the code name from word 1 is stored
in the next position in a NAME list. The four word defi-
nition field is checked, and if a definition has been in-
cluded, the data is transferred to the four word group
assigned to this code name in array NTRAN. If no defi-
nition was included, the code name itself is used as the
definition, and is transferred to the assigned group in
NTRAN. The program then returns to 2 for the next card.

5. A record from the simulation results tape is read in.

5-4

I

. .

6.

7.

9.

I .

10.

If the ffLISTft flag is zero (has not been set), the -
program proceeds to 7. If the LIST flag has k e n set,
the program skips to 12.

If the ID flag (INUhQ has been set, the program pro-
ceeds to 8. If the ID flag is zero, and the record con-
tains the *NAME label, the ID flag is set before the
program proceeds to the print routines in 10.

The record is checked to see what simulation label
it contains. If it contains a simulation history label
and the history control flag has been set, the program
proceeds to 9. If the history control flag is zero, the
program skips to 1 O . I f it contains the state list label,
the program proceeds to 11. If it contains the "End
of Simulationf1 label, the lfIDfl flag value is set to
signal completion of the translation, and the program
then proceeds to 10. If it contains no label, the program
proceeds directly to 10.

*

The code name is processed for translation. The code
name (of the variable) contained on the simulation
record is compared to the list of code names in the
NAME list previously processed in 3. If the code
name is located, the corresponding 4 word group from
NTRAN is substituted for the code name on the record,
and the program proceeds to 10. If no match is found,
the program proceeds directly to 10.

The print controls are checked. If an output save tape
is to be created, the processed simulation record is
written on the save tape before continuing. The input
tape flag is checked, and if a standard print tape is
being translated, paging and title controls are bypassed.
If the tape is the simulation output tape, the line count
is checked and if zero, paging and title printing is
accomplished before writing the processed simulation
record for the standard system print. The input tape
flag is again checked, and if a standard print tape is
being translated, line count incrementing and checking
is bypassed. If the tape is the simulation output tape '

the line count is incremented, checked and zeroed if it
has reached 50. The ID flag is checked and if it has
been set to signal the end of the translation, (Refer to 8) ,
the program cleans up and exits. If not, the program
returns to 5.

.

. .

11. The state list controls are set. If the list control flag
is zero, the list is not to be translated, so the program
skips directly to 10. If the list control flag has been set,
the 'List in Progress' flag is set before proceeding to
10.

The state list is processed. If the record contains the
*END LIST label, the 'list in process' flag is zeroed,
and the program skips to 10. If the record is not
blank, the program proceeds to 9. If blank, the pro-
gram goes directly to 10.

12.

INPUT FORMATS: Figure 5-1 represents the format of the Simulation Output
Tape and standard output print from a portion of a typical
simulation run. The variable names associated with the
simulation history labels ''input" and *'enter'', are repre-
sentative of the llnicknamesll used when constructing the
DNS model. The vertical bar has been added to highlight
variables whose dictionary cards have been included in
Figure 5-2. These variables are highlighted to demonstrate
the translation technique for obtaining the output shown on
Figure 5-3.

OUTPUT FORMAT:

Figure 5-2 represents part of an input dictionary which will
be used in conjunction with the Translator Program to re-
process the Simulation Output Tape. The input dictionary
may be in the form of a card deck, o r it may be an input
tape containing card images of the input deck. The first
word on the' card is the code name o r 'nickname'. The
third, fourth, fifth, and sixth words a re available for the
associated definition. These cards represent the ,results of
adding definitions to the basic name cards create'd previously
by an associated program (reference Section 2 , DNS Name/
Time card Generator). The card for variable DIl22 is typi-
cal of a basic name card. Since no definition has been added
in for this variable, its code name would be used as its trans-
lation name.

'

Figures 5-3 and 5-4 represent the format of the standard out-
put print after translating the Simulation Output Tape of
Figure 5-1. The vertical bar has been added to highlight the
variables whose dictionary cards were included among the
group shown in Figure 5-2. A comparison of Figures 5-1
and 5-3 shows that the only discernible changes are to the
names of variables which have a definition included in the
dictionary. If no dictionary card was supplied, or the defi-
nition field for the variable was left blank, the output record
will be identical to the input record.

5-6

. . . .

!

9 U

4 r

N C

4 - r

4 c

4

4 - C

O F

. .

5-7

. .
0

. -

' SIJARE 703 SYh!!.3OLIC CARD - -- 7
SHARE 703 SYL'EOLIC CARD I . J

I

SHARE 709 S h ; J O L I C CARD 1
I

SHARE 703 SYM50LIC CARD

SHARE 709 SYMEOLIC CARD 1
c *

SHARE 709 SYUBOLIC CARD

SHARE 709 SYUEOLIC CARD -
SHARE 709 SYMBOLIC CARD

N
N
N
N
N
N
LW
N
N
N
N
cy
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N
N
N
N
N
N
cy
cy
N
N

N
N
N
N
N

N
cy
N

N
N
N
N

-

n
0
C-Y
PI
m

m
n

m

n

n

n

n

n

-
0

0
0
n
n
m
0
n
n
m
PI
c-3
n
n
n -
0
0
n
m
n
m
n
m
n
n

n
n
n
n

0

PI
PI
n
m
PI
n
n
n -
m
0 -
n
0
c?
m

CI
PI

n

W
W
W
W
W
W
(0

W
W
cp
co
W
W
W
0
W
W
W
0
W

u1
W
W
W
Lo
W
W
co
co
co
W
W
W
co
W
0
W
W
W
W

co
rp
W
W
W
0
co
co
W
W
W

W
Lo
W
W

h
(r

h

h
h
t-
h

t-
t-
h *
h

h

h
h

h

h
I-
h

h
h
t-
P-
t-
h
h
h
h
h
h

h
c-
b

h

h

h
h

c
h

h

c -
h
h

r-
h
h
h
c -
pl

h
fr

?-

t3
OD
W
OD

m
W
oa

OD
OD
m
m
OD
OD
ea
ar
W
ea
00

.OD
OD
OD

m

m
OD
OD
OD
OD

50
n
OD

OD
OD
OD
oa
W
OD
W

W
W
W
W
m
a
Co

m
m
OD
0
00
m
OD
OD
ar
OD

v)
W
(L

0
n
a

a o n -

5-8

. .

...

9
4

0

In
m
d

. ,

z

I !
i
I t

. 4

. .

5-9 ,

* . . :
I

. .

U

5-10

I

. .d u

4
E!
.d
m
P aa
cd
m
d
cd

u
rl

c

APPENDIX A

PROGRAM F U) W CHARTS
' .

. .

1 ' Figure A-1. SUBROUTINE DNSINP (1 of 4)

5-13

Figure A-1. SUBROUTINE DNSINP (2 of 4)

5-14

5

Figure A-1. SUBROUTINE DNSINP (3 of 4)

5-15

. .

!

I NCRENENT
PAGE COUNT

. .

Figure A-1. SUBROUTINE DNSINP (4 of 4)

* 5-16

EN1 RY Q
. .

COUNTER FOR
NEXT INCREMENT NAB€ ' I

Figure A-2. SUBROUTINE DNSRDG (1 of 1)

5-17

i

5-18

B

I

Figure A-3. SUBROUTINE READC (2 of 3)

5-19

.c3 : .

WRITE
NAMES

SET NNFG = 0
HORO 3

. .

Figure A-3. SUBROUTINE READC (3 of 3)

5-20

. .

APPENDIX €3

GIOSSARY OF TERMS

u

1.0 . INDEX OF VARIABLES

The following is an alphabetical listing of the terms used in the DNS Translator
Program.

' *

NAME DESCRIPTION

. .

IN Input name counter.
INONE Entry flag.
INUM Translation flag.
KARD Data input M e r .

LCT Line counter.
LIST 3 Simulation list flag.
LSFG List processing flag.
NAMCT * Name count.
NAME Simulation name.

' NBUF . Spare word.

. KODE Name .code.

,

' NNFG Simulation history flag.
NPAG Page counter.
NSWDS Simulation I/O buffer.
NTAPE Input tape flag.
NTES Output tape flag.
NTRAN Dictionary name.
NTYP I Input tape flag.

2.0 DE FINITIONS

- NAME. DESCRIPTION

IN A word in subroutine READC used as a counter to
store the number of names read when processing
the Dictionary data (cards o r tape) supplied for
the run.

5-21

NAME ' DESCRIPTION

INONE

. , .. S I .

INUM

KARD

KODE

A word in subroutine DNSRDG which is set during
the first entry to signal subsequent entries that
initialization of the name search routines has been
accomplished.

, A word in subroutine DNSINP used as a flag to
signal that translation of a simulation output tape
is in progress. The flag is set to 2 when the
simulation *NAME label is encountered, and is
in turn set to 9 when the end of simulation *$$$e
label is encountered.

A 15 word input buffer containing a 14 word array
KARD and an end buffer word NBUF. It is used
in subrqutine READC for temporary storage when
prQcessing the program data and dictionary cards

'

. .

or tape.

A word in common block /NTEST / used as a signal
and to store the reference position at which an
encountered simulation name was located in the
dictionary list. If the simulation name was not in-
cluded in the dictionary list, the value is set to
zero.

A word in subroutine DNSINP used as a cofinter for
storing the number of print lines processed. It is
tested before writing, and if the count has been
zeroed, paging and titling instructions are activated.
It is incremented and tested after writ ing, and when
the count equals 50, LCT is rezeroed. It is also
zeroed if specified Simulation Control Labels are
encountered.

LCT

t

LIST A word in common block /NAMEL/ used as a flag to
signal whether names in the simulation state lists
are to be translated. The flag is set to 1 o r 0 in sub-
routine READC when the *NAMES card is read, and
is later used by subroutine DNSINP to select an ap-
propriate processing path. It is set to 1 if the third

. word on the *NAMES card is blank o r contains a "List
0" label. If not, it is set to 0. If set to 1, the state
list is to be translated: If 0, it is to be copied exactly
as it is.

:

5-22

. .
NAME

LSFG
. t

NAMCT

' NAME
. .

NAMEL

NBUF

NNFG

..
. . .

. .

DESCRIPTION

A word in subroutine DNSINP used as a flag to
signal that a Simulation State List is being pro-
cessed. It is set when a Simulation tt*I;CST1l
label is encountered if the LIST flag has also been
set, and is zeroed when a succeeding *END LIST
Label is encountered.

A word in common block /NAMEL/ used to store
the number of names which were contained in the
Dictionary (cards o r tape) used for the run. Its
value is set in subroutine READC from the final
value of counter IN, and is used in subroutine
DNSRDG when initializing name search routines.

A 4000 word array in common block /NAMEL/
used to 'store the list of Names being defined in
the Dictionary. The array is used in conjunction
with counter IN in subroutine REAM= when the ' . . ,
Dictionary data is read in. Each Name is stored
in BCD format in a consecutive position in the

. array, and its associated 4 word definition (trans-.
lation name) is stored in array NTRAN.

t t
.

A 20 , 003 word common block reserved for stor-
ing data associated with processing of Dictionary
names, and translation names o r definitions. It
contains LIST, NNFG, NAMCT, a 4000 word
array NAME, and a 16,000 word array NTRAN.

A word in common block /KARD/ included for
future use when using Dictionary data tapes having
a 15th data word.

A word in common block /NAMEL/ used as a flag
to signal whether names in the simulation history
(action and reaction table printout) are to be trans-
lated. The flag is set in subroutine READC when
the control cards are read, and is later used by
subroutine DNSINP to select an appropriate pro-
cessing path. It is set to 1 if word 3 of the *NAME$
card is blank, o r contains the label HISTOR. If word
3 contains LISTO, the flag is set to 0 . If set: to 1,

' 5-23

. .

. .
NAME DESCRIPTION

the histories are to be translated. If set to 0 ,
the histories are merely to be copied.

. .

NPAG

NSWB

NTAPE

A word in subroutine DNSINP used as a counter
for storing the page number to be assigned to
each page of the program printout.

A 20 word input buffer used in subroutine DNSINP
for temporary storage of a Simulation tape record,
used in subroutine DNSRDG when conducting the
nallne search, and again used in DNSINP as the
Output Print buffer.

A word in subroutine READC used as a flag to sig-
nal that the Input Dictionary is to be read from a
special Input tape. It is set to 1 if the first data
card is labeled *INPUT, and all further Dictionary
data will be read from the special Input. If 0 , the
data is read from the standard load tape.

NTES A word in common block /NTEST/ used as a flag
to signal that the program results are to be stored
on an output save tape. It is set to 1 in subroutine
READC if word 3 of the *NAMES card is blank.
If not, the flag is zeroed. The f lag is used by sub-
routine DNSINP to select an appropriate process
ing path.

NTEST A common block of 3 locations containing KODE,
NTES, and NTYP.

A 16,000 word array in common block /NAMEL/ NTRAN
, used for storing the 4 word (up to 24 BCD characters

maximum) definitions o r translation names associ-
ated with each name contained in array NAME. A .
word in common block /NTEST/ used as a flag to
signal whether a Simulation Output Tape or the
standard system printout is to be translated. The
flag is set to 1 in subroutine READC if the 'Bl'
label is encountered on the control card. If not,
the flag is zeroed. The flag is tested in subroutine
DNSINP to select the appropriate processing path.

. . *. . ,
. .

.
. .

. . . .
I .

. . . .

. .

. .' .

SECTION

DTCIREFTAB PROGRAM

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

2 .

AUTHOR:

PURPOSE:

i
. .

RESTRICTIONS:

STORAGE :

a f

DTC/REFTAB PROGRAM

A. R. Stone
Convair division of General Dynamics

The DTC REFTAB Program was written to provide a
printout of variable names and reference data contained
on the AMA Modek tape generated by the Down Translation
and Culling Program. The printed data contains essential
information on inactive variables in the model, and is
useful to the model builder in validating the AMA Model.
The A.MA Model tape contains a reference table wherein
each variable has been classified as an Initiator,
Transactor or Terminal and assigned a failure analysis
candidacy. This program will read I;neDTC A m tape,
locate the equation and reference tables, convert the data
to BCD and print a listing of the variable number, three
letter code, engineering name, variable type and failure
classification.

.

I

,

1. The program must run on an IBM 7090/94 with IBJOB
systems capability.

2. The program must be used with an AMA Model tape
previously created by the DTC Program. The model
cannot contain more than 4000 variables.

The program occupies 13,358)
beginning at 03004) and ending at 35062) and consists of
the following seven sub-programs.

consecutive core foeations 10
8 8

1. CONTRD Driver
2. DTCINZ Tape data location and read in
3. ER.RMEX Error message printing
4. MANIZ Data formatting for print

6-1

. .
. .

USE:

x

METHOD:

* .

.

.
5. PBCDZ Conversion from BIN to BCD
6. PRINZ Printing of converted data
7. TRANL 3 letter variable code conversion

The program does not require any control cards and is
used as shown in following example of deck setup.

$JOB
$PAUSE
$ATTACH B6
$As SYSUT6
$EXECUTE JBJOB
$IBJOB Go, M f @

718 @OF)
' Binary program deck

DTC AMA. B7 save tape is loaded as a B6 input as shown in '
proceeding examp4e. The output consists of B1 printout of
information extracted from the tape.

The program first sets up a Processing Director Flag (PDF)
to a value of one (1).

1. subprogram M'CNP is called to locate and read in the
reference table prologue and names totals. The tape is
first rewound to insure start and load point. A counter
(KRY) is incremented as each record is read. KRY is
not checked at this point in the processing, but was
included here for future incorporation record counts and
e r ro r exits. The first word of each record contains the
number of items of data contained in the record. The
second word contains the total number of words required
to store these data items in the record. Each record is
read in the following order: first word NITEMS then
second word NWORDS then rest of record into KBUF, with
the value found in the second word used as the number of
the words to be read into array KBUF. The first word of
KBUF is then tested to see if it contains the label *REFER.
When *REFER is located, flag I C T W is set to value of 1
signalling that the record has been located. The values
found in the 18th, 19th, 20th words of KBUF are transferred
into common locations ACTCT, INACT and NAMCT
respectively for subsequent use by the program, and
program control is returned to the driver program. The
flag KTI3.A.K is tested for value of 1 (flag was set to 1 when
the reference prologue record was located). If value is
not 1, a transfer to e r ror print will ensue.

6-2

2. Control is returned to sub-program DTCINP with the
PDF equal to 2 to signal that the reference table is to be
read. The reference table record immediately follows

8 the reference prologue, and consists of one continuous
record which is read and stored in array KREF. The
buffer cells NITEMS and WORDS are zeroed and the
tape is rewound. KTRAK is set to a value of 2 and
control is returned to the driver sub-program. Testing .

of KTRAK is repeated with same results upon er ror
(value other than 2).

The program then returns to DTCINP with the PDF
set to a value of 3 and the tape records are searched
for the word "NAMES. The NAMES record should be
the first record on the tape so counter KRY is tested
and if it exceeds value of one, KTRAK is set to seven
and an error return to the driver sub-program is initia-
ted. When the names prologue record is found and
read into KBUF, flag KTRAK is set to value of 3 and the
word per record buffer is zeroed. Control again transfers
to the driver sub-program where KTRAK is tested as
before. If KTRAK = 3 the PRINT routine is called with
PDF set to a value of 1. A limit value 'M' is set to 1
and the contents of ACTCT are tested. If ACTCT is
found to be zero the value of 'Mf is increased to 2, If
value of ACTCT is not zero, value of 'M' remains 1.
Paging data is initialized and control is returned to the
main driver sub-program. DTCINP is again called with
the PDF now at a value of four.

3.

'

4. A names record is read into KBUF. The format of the
names record is: word one is the total number of words
in the record, word two is the number of items (names)
,described in record, word three is number of words in
the record describing names. Each name is grouped
in three to seven word sections. The first word of the
section contains the numerical code number of the name.
Word two will contain a number from 1 to 5 stating how
many words are used in the variable name. The rest of
the words in the section will contain the actual variable
name in BCD. There will be as many sections as shown
in word two of the record. The names are transferred
individually from KBUF into array KTAB. As a word is
transferred to KTAB, it is tested for a single dollar sign
signalling the end of the names. When the dollar sign

1

i

i
1

j
. .

6-3
. .

... . ,

. : ,. I .

. .

. .

is encountered, K T W is set to a value of 6 to signal
that the last name has been read, The names am,. -.i . ; .. v’.. *--r . **.a’*t -..
placed in a nine by NITEMS array with each name
being placed in words three through seven of each row
of the array. Each row of the a r ray is given an
ascending sequence number which is extracted from
the first word of each name section in the names record.
(The second word of each row is reserved for the 3

’letter coded form of the name. Word eight wi l l contain
the type classification and word nine will have the zeros
and ones failure candidacy classification). When the
names are placed into the matrix KTAB five words are
used for each name regardless of number actually in the
name. The words not containing data are filled with
blanks. A count of variables read in is maintainedin ICNT

.and is compared with that value stored in AC‘TCT, flag
KTRAK is set to a value of 4 if name count (KNT) is less
or equal to the number of active variables (value in ACTCT).
If the current ’name total is more than the ACTCT total,
KTRAK is set to five to indicate that the inactive variables
are now in process. Control is transferred back to the
driver Subprogram when the current names record has
been stored.

I

Control is transferred to subroutine MANIP where the
current data stored in the matrix KTAB is converted to
BCD for printout. The first word of a matrix row is.
loaded into the accumlatm and reduced by one. This
number represents the numerical code number of the
variable, and will be converted to a coded three letter
name for the variable. To determine the exact three
letters the program transfers to TRANS. TRANS
divides the code number by 26 squared (676), the remainder
by 26, and its remainder by 1. The numbers obtained
are used as 6 bit search keys for a table in core storage.
The table is searched 6 bits at a time and each 6 bits
replaced by the octal value found in the table. When the
number has been completely converted to a three letter
alpha code, control is returned to subroutine MANIP
where RH zeroes in the code are replaced with blanks
and the word is stored in word two of its row in KTAB.
Word one of the row (code number of the variable) is
converted to BCD in subroutine PBCD. The failure code
classifications are now extracted from the reference
table data previously stored in array KREF and placed in
the ninth word Qf the row in the matrix KTAB. Finally

% OUTPUT FORMAT:

6.

the coded classification for variable type is extracted
from array KREF and converted to a BCD word which
in turn is placed in the eighth word of the row in the
matrix KTAB. When reference data for all names in
the current names record have been processed, the
program transfers to subroutine PRINT.

Printing i s accomplished directly from the array KTAB
one row at a time with spacing to separate data. As each
row is printed a counter is incremented and compared
with the value stored in ACTCT which represents the I

count of active variables in the model. When the count
and ACTCT are equal, the paging is set back to 1
and a new page is selected and the inactive variables are
printed, if any are in the model. This is determined by
a test of the storage cell INACT which contains the count
of inactive variables in the model. When NITEMS names
from the names record have been processed, the value of
KTRAK is checked. If KTRAK is 4 or 5, the program
transfers to 4 to process another names record. If
KTRAK is 6 the program cleans up and exits,

.

Figure 6-1 is a sample of a test model that was processed by
the DT&C program for use in demonstrating the REFTAB
output shown in Figure 6-2. The subtitles listed under the
title represent columns in the two dimensional array KTAB.
Each row is numbered under subtitle NO and is the first
word in each row of KTAB. This number is the numerical
code number of the variable in the DNS model. Under CODE
the three letter code that will be used in the DNS program
printouts is listed. The three letter code will correspond
to the code number of the variable. Variable #1 is AAA
and Variable #26 is AAZ and Variable #17576 would be
ZZZ. The full engineering names of the variables are
printed in up to five words (thirty characters maximum).
Spaces not containing dab will be filled with blanks. In the
example, a portion of the variables are named in such a fashion
as to provide a test reference of the output of the REFTAB
program. Variable #14 (AAN) is named TERM-BOTH
and in this instance has no other meaning other than to
provide an example to show that the program has determined
it to be a terminal and is a failure candidate for both zeros
and ones. The V. TYPE (variable type) lists the Classification
for each variable. TERM-L is a shortened version of
Terminal, as is TRANS for Transactor, and IMT-R for

.

6-5

. ..

J

I . .
6-6

6
E

m
d u
d
4

5

0
2

.
FI
I

(0

iz

. .

*.. . . -

U

I!
L
E

. .

3
c
c!
0

-
I

c
li
k

.

U

I-
r

L

.
c

a

v)
J1 z
9

6 -7

Initiator.
also been classified as a self referencing variable in
addition to other classifications. Variables with four
asterisks printed in the type column are variables that
have been classified as UNUSED by the DT&C program.
Self referencing variables are those that will effect them- '
selves during a simulation. An example would be a spring
loaded push button where the push button was equated in
such a manner as to turn itself off a certain period of time
after an input (initiator) had set its value to one without
a second input resetting its value to zero. TERMINALS
are variables that will not affect any other variables in
the model. They are the ultimate terminus of actions
and reactions as a result of inputs (initiators).
The unused variables are often the results of e r ro r s in the
logic of the model equations o r are variables that are
actually in the hardware but do not afect nor are affected by
any other variables in the model. They may be removed without
destroying the validity of the simulation. The failure
candidacy is listed under F. CAND and is classified as a
failure for either zeros, ones o r both for ARlA analysis, .
This classification results from the class code placed in
CC79 of the variable time parameter card and the failure
code listing on the first two control cards of the DTC data deck.
The computer time required for a DT&C run plus a
REFTAB run combined are much less than that required for
a Prep Editor run, therefore considerable computer
time is saved by analysis of the information contained in
the listed printout.

The prefix SR indicates that the variable has

*

. '

. .
. .

6-8

6 -9

. -
. .

,

. .

c;." I>
--- I --

INiTlALlZE

KTRAK

I '

+
#I-!#
TITLE

I

I

Figure A-1. SUBROUTINE CONTRD (1 of 2)

6-11

. .

. .

6-13

.
. .

. . .
. -

INCREMENT
RECORD
COUNT

Figure A-2. SUBROUTINE DTCINZ (2 of 3)

6-14

Figure A-2. SUBROUTINE DTCINZ (3 of 3)

. .

6-15

. . . .

. . .
. . . .

Figure A-3. SUBROUTINE ERRMEX (3, of 1)

6-16

. .

I 1
STORE BCD

CODE I N
MATRIX

TABLE

I

I

I
CONVERT TO *

' DESCRIPTION
AND STORE I N
MATRIX TABLE

L
I J

VARIABLE
CLASSIFICATION

INCREMENT
NAME AND

STORAGE i COUNT ERS

Figure A-4. SUBROUTINE MAN12 (1 of 1)

6-17

. .
. . .

PROCESS
DI V i DEN0

BCNUR

F I L L IN REST

RET URN
-

\

Figure A-5. SUBROUTINE PBCD (I of 1)

6-18 ~

A c

WRITE
MATRIX
TABLE

. INCREMENT
L I N E COUNTER

- I

COUNT

. .

J

Figure A-6. SUBROUTINE PRINZ (1 of 1)

6-19

. .

REMAINDER

~

CONVERT
D l V I DEN0
INTO 2ND .
CHARACTER

*

Figure A-7. SUBROUTINE TRANL (l of 1)

6-20

. .

APPENDIX B

GI-QSSARY OF TERMS

1.0 INDEX OF VARIABLES

The following is an alphabetical listing of the terms used in the M'C Reference
Table Program.

NAME DESCRIPTION
. .

Active name count. .
Conversion table. * ACTCT

APHT
DM26 Conversion factor.
INACT Inactive name count.
IPAG . Page number.
KBUF Input buffer.

j KNT Wor d/record.
KREF Reference table.
KTm Output array.
KTRAK Process flag.
LCT Line count.
NAMCT Total name count.
NCANP Failure type.
NITEM Item s/re cord.
NTRAN Temp. conversion buffer.

. NTYP Name classification.
NWORIXI Wor &/record.

2.0 DEFINITIONS

, NAME DESCRIPTION

ACTCT Contains the number of active variables in the
model, and is taken from the twenty-first word
of the DTC/AMA reference table prologue record.
The value of ACTCT is tested in subroutines
DTCINP & PRINT to provide separate printouts

i
for the active and inactive variables.

6-21
I *

NAME

’ . APHT

. .

DM26

INACT

WAG

KBUF

KNT

DESCRIPTION

Table generated in subroutine TRANL to
represent in BCD the twenty-six letters of
the alphabet. The table is generated by three
sets of DUP and VFD psuedo operators which
produces a table containing octal 21 through 31,
41 through 51tand 62 through 71.

Division array for determining the APHT table
address of the letters for a three letter code name.
The numerical code number extracted from word
1 of KTAB is isolated and reduced by a bias of 1
for division by DM 26. The first division is by
26 squared to give the sub address in APHT of
the first character for the code name. The
remainder is divided by 26 for the second character,
and the final remainder is the sub address for the
third character.

Contains the number of inactive variables in the
model, and is the value taken from the twenty-
second word of the DTC/AMA reference table
prologue record.

Paging count. Value of this cell is printed at the
top RH of each output page.

A three hundred word buffer used for input storage
of information read in from the DTC/ANLA tape.
The reference table prologue record is placed in
this storage block while ACTCT, INACT and NAMCT
are extracted. Each record on the tape is stored
in this block while test is made for key words in the
f i r s t word of records e.g. *NAMES for names
record, *REFER for reference table, etc. Each
names record is loaded into KBUF during the
generation of the two dimensional array KTAB.

During read in of the names record KNT is increment-
ed by one for each name processed. This count
continues to be additive regardless of how many
records processed. KNT is compared with the
active count to separate active and inactive variabJe
printing.

6-22

. .

._
NAME DESCRIPTION

KREF A four thousand word storage block for the
DTC/AMA tape reference table. The first word
in KREF is word four of the actual reference

during read in for data ID and record length.
Each word in this array will contain the failure
candidacy and variable classification codes whioh
are extracted and converted in subroutine MANIP
for insertion in the array KTAB.

’ table record. Words one through three are utilized

KTAB .

,

KTRAK

A 9 by 200 two dimensional array containing BCD
data extracted and converted from the DTC/AMA
tape in a format for printout. The array is
filled for each record of names processed to the
extent of the number of names in the record. This
value is stored in NITEMS when the record is read.
Printoui is made record by record as processing
of each complete names record is completed. The
detailed description of data is described under
Output Format.

The program director flag (PDF). The value o r
KTRAK is set prior to returns to the driver
subroutine where it is tested to determine continuing
flow of processing.

KTRAK=O Call DTCINP with PDF =1 (1st pass)

KTRAX = 1

KTRAK = 2

Call DTCINP with PDF = 2 (2nd pass)

Call DTCINP with PDF = 3 (3rd pass)

I

KTRAK=3

KTRAK=4

KTRAK=5

Call print with PDF = 1 (lst pass)

Cal l DTCINP with PDF = 4 subsequent
passes through subroutine to read h
and process more names. Used as
print check indicating active name
process not completed.

Same as 4 but signals that processing
of inactive names is now underway.

.6-23

KTRAK = 6 Name processing completed,
termination $ encountered.

Error in processing call ERREM IKTRAK = 7
with PDF = 4 (only one er ror print
option utilized at present). Print
KTRAK,

LCT The line count of printing pages contain fifty lines'
of data.

Total number of names derived from word 23 of
the DTC/ANLA reference table prologue record.

NAMCT

NCAND
..

. .

NITEM

NTRAN

NTYP

Seven words in storage containing BCD data for
printing, the failure candidacy. NCAND = BOTH,
NCAND + 2 = ZEROS, NCAND +4= ONES. The
remaining words are blank. When the reference
data for each variable is processed, the appropriate
word from NCAND is stored in KT'AB (word nine)
by the subroutine MANIP. Selection is accomplished
by isolating bits 3, 4 & 5 of the word being
processed from the reference table KREF and
placing this number into XR4. NCAND is then
selected as modified by XR4 which results either
no printing (blanks) o r one of the three words.

A word used for storing the value from the second
word in the DTC/AMA tape record which lists the
total number of items in the record. For final
names record, this number will equal the number
of names plus one for the terminating $.

Temporary storage in subroutine TRANS used when
converting from the numerical code to the three
letter alpha code.

BCD data contained in subroutine NLANIP that contains
the name classifications for the corresponding codes
extracted from BIT positions 18, 19 and 20 of each
word of the DTC/AMA reference data in KREF.
Word selection is similar to selection of NCAND. '

6-24 -

NAME

NWORDS

DESCRIPTION

From the third word for storing the value of the
names records from the DTC/AMA tape. It
provides the number of words to be read from
the record. NWORDS are read from the record
and stored in KBUF.

. . . .

. .

+

I

6-2 5

1.

. .

REFERENCES.

"Automatic Malfunction Analysis by Discrete Network Simulation,
division Of General DyrIamiCS, (Report) Appendix B 60C DDF66-007, October
1966. Also see Volume Two "Simulation of Selected Discrete Networkstt
(Report), NASA-CR-6910.

ConMir

. .

I .

. .

7 -1

